期刊文献+

基于外心对偶剖分的有限体积元法 被引量:2

Finite Volume Element Method Based on Circumcenter Dual Subdivisions
下载PDF
导出
摘要 考虑基于外心对偶剖分的椭圆型与抛物型方程的有限体积元法.设原始三角形剖分的任意三角形单元的重心Q和外心C的距离满足|QC|=O(h2),在此条件下,证明了二阶椭圆型方程基于外心对偶剖分的有限体积元法的L2误差估计,以及抛物型方程基于外心对偶剖分的半离散和全离散有限体积元格式的L2和H1误差估计. We considered the finite volume element methods (FVM) based on circumcenter dual subdivision for the elliptic equations and parabolic equations. Let the primal triangular partition satisfy the restrictive condition, that is, the distances between the barycenter Q and the circumcenter C of any triangle element satisfy |QC|=O(h^2), under this condition, firstly we have obtained the optimal L^2 error estimates of the finite (volume) element method based on circumcenter dual subdivision for the elliptic equation, furthermore we have also proved the optimal L^2 and H^1 error estimates of the semi-discrete and fully-discrete finite volume element (method) based on circumcenter dual subdivision for parabolic equation.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第1期37-44,共8页 Journal of Jilin University:Science Edition
基金 吉林大学创新基金(批准号:2004CX026).
关键词 三角形剖分 对偶剖分 有限体积元法 误差估计 triangular subdivision dual subdivision finite volume element method error estimate
  • 相关文献

参考文献4

  • 1吴微.非线性抛物方程广义差分法的误差估计[J].计算数学,1987,9(2):119-132.
  • 2李永海.四边形网格有限体积元法的r误差估计.吉林大学学报:理学版,2003,41:7-9.
  • 3程志伟,李永海.基于BB型对偶剖分的抛物方程有限体积元法[J].吉林大学学报(理学版),2004,42(2):179-181. 被引量:1
  • 4LI Rong-hua, CHEN Zhong-ying, WU Wei. The Generalized Difference Methods for Differential Equations (Numerical Analysis of Finite Volume Method) [M]. New York: Marcel Dekker, 2000.

二级参考文献1

共引文献1

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部