期刊文献+

快速颗粒流本构关系在固液两相流中的适用条件初探 被引量:2

Preliminary Investigation on the Application of the Constitutive Relations for Rapid Granular Flows to Solid/Liquid Mixtures
下载PDF
导出
摘要 从固液两相流的颗粒相本构关系的推导出发 ,分别运用 Chapman-Enskog方法和 Grad-1 3矩法考察了液相作用下颗粒相本构关系 .结果表明当两相脉动速度无关或者同相位时 ,快速颗粒流本构关系适用于固液两相流的颗粒相 .并对低、高浓度固液两相流定性分析了具体的应用条件 . Starting from the derivation of the constitutive relations of particle phase for fluid solid two phase flows, the classical method of Chapman Enskog iteration and that of Grad′s 13 moments are employed to investigate the effect of fluid fluctuation on the constitutive relations of particle phase. It shows that the cibstutytuve rekatuibs if rapid granular flows are available for fluid solid mixtures in two limit cases, in which the fluctuating velocities of two phases are uncorrelated or particles follow the fluid fluctuation completely. For solid/liquid flows, the two limit conditions correspond to the flows with large particles or high volumetric concentration.
出处 《应用基础与工程科学学报》 EI CSCD 2000年第4期416-424,共9页 Journal of Basic Science and Engineering
基金 国家自然科学基金委 水利部联合资助重大项目!编号 59890 2 0 0
关键词 颗粒流 固液两相流 本构关系 脉动速度 推导 液相 应用条件 快速 适用条件 相位 rapid granular flows, solid/liquid two phase flows, constitutive relations
  • 相关文献

参考文献19

  • 1傅旭东 王光谦.低浓度固液两相流的动理论及应用—理论分析[J].清华大学学报,2000,.
  • 2Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE J, 1990,36(4) :523-538.
  • 3Louge M Y, Mastorakos E, Jenkins J T. The role of particle collisions in pneumatic transport[J]. J Fluid Mech,1991,231: 345 -359.
  • 4Cao J, Ahmadi G. Gas-particle two-phase turbulent flow in a vertical duct[J]. Int J Multiphase Flow, 1995,21(6) : 1203- 1228.
  • 5Ni J R, Wang G Q, Borthwick A G L. Kinetic theory for particles in dilute and dense solid-liquid flows[J]. J Hydr Eng, ASCE, 2000,126(12):893-903.
  • 6Aragon J A G. Granular-fluid chute flow: experimental and numerical observations[J]. J Hydr Eng, ASCE,1995,121(4):355-364.
  • 7Crowe C T, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles[M]. Boca Raton: CRC Press,1998.
  • 8Jenkins J T, Savage S B. A theory for the rapid glow of identical, smooth, nearly elastic, spherical particles[J]. J Fluid Mech, 1983,130:187-202.
  • 9Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow : inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. J Fluid Mech, 1984,140:223-256.
  • 10Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. San Diego:Academic Press, 1994.

共引文献2

同被引文献26

  • 1王光谦,倪晋仁,费祥俊.快速颗粒流碰撞应力的动理模型[J].力学学报,1993,25(3):348-355. 被引量:8
  • 2傅旭东,王光谦.低浓度固液两相流的颗粒相动理学模型[J].力学学报,2003,35(6):650-659. 被引量:17
  • 3Peirano E, Leckner B. Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion [J]. Progress in Energy Combustion Science, 1998,24:259-296.
  • 4Cao J, Ahmadi G. Gas-particle two-phase turbulent flow in a vertical duct [ J ]. Int J Mul Flow, 1995,21 (6) :1023-1228.
  • 5Ni J R, Wang G Q. Kinetic theory for particle concentration distribution in two-phase flow[J]. J Eng Mec, 1990, 116 (12) :2738-2748.
  • 6Ni J R,Wang G Q. The kinetic theory for dilute solid/liquid two-phase flow[J]. Int J Mul Flow,1991,17(2) :273-281.
  • 7Ni J R,Wang G Q. Kinetic theory for particles in dilute and dense solid-liquid flows [ J ]. J Hydr Eng, ASCE ,2000, 126(12) :893-903.
  • 8Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows [ J ]. Nature,2006,441 (7094) :727-730.
  • 9Fu X D, Wang G Q, Dong Z N. Theoretical analysis and numerical computation of dilute solid/liquid two-phase pipe flow[J]. Science in China,Series E,2001,44(3) :298-308.
  • 10Liu T P, Yang T. Energy method for Boltzmann equation [ J ]. Physica D ,2004,188 : 178-192.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部