期刊文献+

异形甲烷蒸汽转化催化剂传质传热耦合数学模型 被引量:2

Coupling Process of Mass Transfer and Heat Transfer for Irregular Shape Methane Steam Reforming Catalyst
下载PDF
导出
摘要 针对甲烷蒸汽转化催化剂异形化过程中理论研究困难、性能数据主要依靠实测的问题,建立了适用于异形甲烷蒸汽转化催化剂的传质-传热耦合三维数学模型,用有限元法求解,求解方法简单、快速、精确。应用本模型计算了七孔球形转化催化剂的效率因子,获得了催化剂粒内的浓度、温度、反应速率、温度梯度分布。效率因子模型值与实验值较为吻合,平均相对误差8 22%。模拟结果表明:七孔球形催化剂效率因子在0 2~0 4之间,粒内存在10~16℃的温差,不能视为等温;催化剂粒内浓度、温度变化剧烈,有效反应区仅存在于靠近催化剂外表面的较小范围内,粒内存在较大的死区。 A 3D reaction-diffusion model for irregular methane steam reforming catalyst is developed. The model was solved in non-isothermal condition with finite element method (FEM). FEM is simple, accurate and especially suitable for irregular geometries. The simulation was carried out over seven-channel spherical catalyst. Intraparticle concentration, temperature, reaction rate and temperature gradient profile are calculated. The effectiveness factor of the catalyst is 0.2~0.4. The simulation data of the model are in good agreement with the experimental results. The average absolute deviation between the calculated efficiency factors and those of experiments is 8.22%. Temperature difference of 10-16℃ exists within the catalyst. The parameters within the catalyst keep constant in a large area of central part, contrasting with the sharp change in the surface layer of the catalyst particle. A large equilibrium dead zone exists inside the steam reforming catalyst.
出处 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2004年第6期14-18,共5页 Natural Gas Chemical Industry
关键词 异形催化剂 甲烷蒸汽转化 效率因子 数学模型 有限元 irregular shape catalyst methane steam reforming efficiency factor mathematical model finite element method
  • 相关文献

参考文献5

  • 1Levent M,Budak G,Karabulut A.Estimation of concentration and temperature profiles for methane-steam reforming reaction in a porous catalyst[J].Fuel Processing Technol,1998,55:251-263.
  • 2Xu J,Froment G F.Methanation steam reforming, Methanation and water-gas shift(I): intrinsic kinetics[J].AIChE J,1989,35(1):88-96.
  • 3Aris R.On shape factors for irregular particles-I the steady state problem. Diffusion and reaction[J].Chem Eng Sci,1957,6(6):262-268.
  • 4Paul L G.Automatic Mesh Generation:Application to Finite Element Methods[M]. Hoboken:Wiley,1991.
  • 5Deuflhard P,Freund R,Walter A.Fast secant methods for the iterative solution of large nonsymmetric linear systems[J].IMPACT Computing in Sc and Eng,1990,2(3):244-276.

共引文献1

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部