期刊文献+

Study of pile shaft resistance in clayey soils 被引量:2

粘土中桩侧摩阻力研究(英文)
下载PDF
导出
摘要 Based on principal component analysis, the rules of clayey soil's behaviors affected by varied indices were studied. It was discovered that the common method of the single liquidity index IL used to determine the consistency of silt-clay or silt-loam was not rational. It was more rational that the liquidity index IL combined with the void ratio e characterized the behavior of silt-clay. Similarly the index of e depicted the nature of sandy loam more rationally than IL. The method of predicting the pile shafted resistance by the two indices of e and IL, which was more accurate, was obtained by the methodology of back propagation (BP) artificial neural networks combined with principal component analysis. It was also observed that the pile shaft resistance increased with the increase of depth within a critical affect-depth ranging from 20 to 30 m, and the harder the clayey soil consistency was, the shallower the critical depth was. 采用主成分分析方法,就粘性土多指标反映其性质的规律进行了研究.研究表明,采用液性指数作为单一指标的传统粘性土物理状态划分方法,在反映亚粘土和亚砂土性质时不尽合理.而采用液性指数IL.结合孔隙比e反映粉质粘土的特性更加合理.同样,孔隙比e比液性指数IL能更好地描述亚粘土的天然特性.采用人工神经网络结合主成分分析,得出应用孔隙比e和液性指数IL两个指标来预测桩侧摩阻力更为精确.同时发现在一定临界影响深度范围内(20-30 m),桩侧摩阻力随深度的增加而增加,且粘性土的稠度愈硬,临界深度愈浅.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期498-502,共5页 东南大学学报(英文版)
关键词 Artificial intelligence Backpropagation Correlation methods Mathematical models Principal component analysis 大直径转孔灌注桩 主成分分析 人工神经网络 桩侧摩阻力
  • 相关文献

参考文献2

  • 1Shi Minglei,Deng Xuejun,Liu Songyu.A study of LDBPs shaft skin friction for piles in cohesive soils[].Journal of South.2000
  • 2Feng Zhiliang,Shun Haitao,Wang Shujuan.Prediction of vertical ultimate bearing capacity of single pile by using artificial neural networks[].Journal of Tongji Medical University.1999

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部