期刊文献+

判断因果效应可识别的方程方法

EQUATION METHOD ON THE DETERMINATION OF IDENTIFIABILITY FOR CAUSAL EFFECT
下载PDF
导出
摘要 运用方程组求解的方法来解决一类因果效应可识别的充要条件的问题 .只要运用该方程组解的性质便可判断在一类条件独立假设之下因果效应是否可识别 .通过 3个例子分别验证了在各自假设之下因果效应的可识别性 . The identifiability for causal effects under a type of assumptions based on conditional independence in a causal model is treated by equation method. Using this approach,one only needs to justify the properties of equations, arriving at the purpose of determing whether causal effect is identifiable. Three examples are presented to show the feasibility of the method. Consider the causal model (X,Y,Z), where X is treatment variables with values 0 and 1 and Y is response variable with values 0 and 1 and Z is the covariate variable with values 1,…,K, dividing the population into K subpopulations. The conditional independence counterfactual assumptions is (X⊥Y 0|Z∈B j),j=1,…,m, where Y 0 is the potential response. Define the matrix A K×m=(a ij) with a ij=I B j(i). Then for any observational distribution P, the causal effect is identifiable with respect to the counterfactual assumptions if and only if (a) Equations A′Γ=V P have at least one solution Γ 0=(Γ 01,…,Γ 0K)′, such that 0< Γ 0j<P(Z=j|X=1), where V P=(V P1,…,V Pm)′ with V Pj=P(Y=1|X=0,Z∈B j)· P(Z=j|X=1) and (b) Any solution Γ=(Γ 1,…,Γ K)′ to the equation A′Γ=0 must also satisfy ∑jΓ j=0. Under the identifibale case, the causal effect of nontreatment in the treatment subpopulation equals to ∑jΓ 0j,where Γ 0 is any solution in (a).
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期719-724,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目 (39930 16 0 ) 北京师范大学青年基金资助项目 (10 4 95 1)
关键词 条件独立 因果效应 可识别 conditional independence causal effect identifiability
  • 相关文献

参考文献13

  • 1Rubin D B. Estimating causal effects of treatments in tandomized and nonrandomized studies[J]. Journal of Educartional Psychology, 1974, 66:688
  • 2Rubin D B. Assignment of treatment group on the basis of a covariate[J]. Journal of Educational Statistics, 1977, 2:1
  • 3Rubin D B. Bayesian inference for causal effects: the role of randomization[J]. The Annals of Statistics,1978, 6:34
  • 4Rubin D B. Discussion of ''randomization analysis of experimental data: the fisher randomization test'' by D. Bsu[J]. Journal of American Statistical Association, 1980, 75: 591
  • 5Rubin D B. Comment on'' Neyman (1923) and causal inference in experiments and observational studies''[J]. Statist Sci, 1978, 5:472
  • 6Greenland S, Robins J, Pearl J. Confounding and collapsibility in causal inference[J]. Statistical Science, 1999, 14:29
  • 7Greenland S, Robins J. Identifiability, exchangeability and epidemiologic confounding[J]. Iht J Epidem,1986, 15:413
  • 8Stone R. The assumptions on which causal inferences rest[J]. Royal Statistical Society, 1993, 55:455
  • 9Zheng Zhongguo, Zhang Yanyan, Tong Xingwei. Identifiability of causal effect for a simple causal model [J]. Science in China, 2002, 45:335
  • 10Tong Xingwei, Zheng Zhongguo, Zhang Yanyan, et al. Sufficiency and necessity for the identifiability of an important type of ancillary information in a causal model [J]. Acta Scientiarum Naturalium University Pekinensis, 2002, 38: 591

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部