期刊文献+

一种基于前缀广义表的快速间接关联挖掘算法

An algorithm based on prefix general list for mining indirect associations
下载PDF
导出
摘要 间接关联是数据挖掘领域中一种数据项之间的关联关系,可有效地应用于市场营销及Web日志分析等领域.现有的间接关联挖掘算法采用Apriori算法框架,需挖掘出所有的频繁项目集,因而存在挖掘效率低的缺陷.为此,提出了一种基于前缀广义表的快速间接关联挖掘算法,该算法无须生成所有的频繁项目集且仅须扫描数据库2遍,可有效提高间接关联的挖掘效率. Indirect association is an associated relationship between items and frequent itemsets in data sets. There are many potential applications for indirect associations, such as database marketing and web - log analysis, etc. Existing algorithms need to generate all frequent itemsets using Apriori - like framework. Hence, they are in low efficiency. This paper proposes an algorithm based on prefix general list for mining indirect associations-ABPGLMIA, which improves the mining efficiency of indirect associations by scanning database twice. Experimental results show that the algorithm ABPGLMIA is efficient.
作者 杨明 杨萍
出处 《安徽工程科技学院学报(自然科学版)》 2004年第4期40-45,共6页 Journal of Anhui University of Technology and Science
基金 安徽省自然科学基金资助项目(03042205)安徽省教育厅教学研究基金资助项目(2003kj029)
关键词 间接关联 挖掘算法 广义表 频繁项目集 WEB日志 数据项 APRIORI算法 市场营销 效率 关联关系 data mining indirect association prefix general list association rule
  • 相关文献

参考文献9

  • 1[1]Agrawal R, ImielinSki T, Swami A. Mining association rules between sets of items in large database[A]. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Washington, DC, 1993. 207 - 216.
  • 2[2]Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. Proceedings of the 20th International Conference Very Large Data Bases(VLDB' 94) [ C]. Santiago, Chile, 1994,487 - 499.
  • 3杨明,孙志挥,吉根林.快速挖掘全局频繁项目集[J].计算机研究与发展,2003,40(4):620-626. 被引量:35
  • 4[5]Cheung D, Hah J, Ng V, et al. Maintenance of discovered association rules in large databases: an incremental updating technique[A]. Proceedings of the 12thInternational Conference on Data Engineering[C]. New Orleans, Louisiana, USA,1996.106- 114.
  • 5[6]Cheung S LEE, Kao B. A general incremental technique for maintaining discovered association rules[A]. Proceedings of the 5th International Conference on Database Systems for Advanced Applications[C]. Melbourne, Australia, 1997. 185 - 194.
  • 6[7]Han J W, Pei J, Yin Y. Mining frequent patterns without candidate generation[ A]. Proceedings of the ACM. SIGMOD International Conference on Management of Data[C]. Dallas,USA, 2000, 1 - 12.
  • 7杨明,孙志挥,吉根林.一种基于分布式数据库的全局频繁项目集更新算法[J].东南大学学报(自然科学版),2002,32(6):879-883. 被引量:4
  • 8[9]Pang - Ning Tan, Vipin Kumar, Jaideep Srivastava. Indirect association: Mining Higher Order Dependencies in Data[A].PKDD, 2000. 632 - 637.
  • 9[10]Pang- Ning Tan, Vipin Kumar. Mining Indirect Associations in Web Data[A]. WebKDD 2001: Mining Log Data Across All Customer TouchPoints[C], 2001.

二级参考文献6

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部