期刊文献+

应用多介质PPM方法计算斜激波与物质交界面的相互作用 被引量:4

Numerical Computations of the Refraction of a Shock Wave at Interface by Multi-component PPM Algorithm
下载PDF
导出
摘要  利用多介质PPM方法研究斜激波与物质交界面的相互作用.采用与体积分数耦合的Euler方程组作为计算模型,用双波近似来求解一般刚性气体状态方程Riemann问题.通过体积分数的计算来获得界面的位置,在整个流场采用统一的高阶PPM格式进行计算.文中对斜激波与不同物质界面相互作用进行了数值模拟,并给出了交界面上由于斜压效应产生的涡列的演化过程,特别是强斜激波与不同物质界面的相互作用的情况. It presents numerical computation results of the refraction of a plane shock wave at the different interfaces. The unsteady, two-dimensional, compressible, Euler equations are solved numerically assuming stiffened gas equation of state. The numerical method used is PPM (Piecewise Parabolic Method) method for multi-component. On basis of solving the Riemann problem using two-shock approximation the interface can be determined by computing the volume-fraction in terms of the high-order PPM method in the whole computational field. This method is also used to compute some case of the inter-action when the shock wave meets the interfaces of the different fluids. It also gives the evolvement of interfaces due to baroclinic effects on the interface, especially in the cases of strong shock striking at the interfaces.
出处 《计算物理》 EI CSCD 北大核心 2004年第6期531-537,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金重大项目(19932010) 国家自然科学基金重点项目(10135010) 国家自然科学基金(10072028) 中物院预研基金(20030657) 计算物理实验室试点基金资助项目
关键词 激波 多介质 交界面 RIEMANN问题 近似 相互作用 高阶 物质 气体状态方程 一般 Incompressible flow Interfaces (materials) Numerical methods Refraction Unsteady flow Vortex flow
  • 相关文献

参考文献2

二级参考文献4

  • 1[1]HAWLEY J F, ZABUSKY N J. Vortex paradigm for shock-accelerated dsensity-stratified interfaces [J]. Physical Review Letters, 1989, 63(12):1241-1244.
  • 2[2]FURSENKO A A. SHAROY D M, TIMOFEEV E V ,VOINOVICH P A. High-resolution schemes and unstructured grids in transient shocked flow simulation[J]. Lecture Notes in Physics, 1993,414: 250-254.
  • 3[3]FURSENKO A A, MENDE N P, OSHIMA K, et al. Numerical simulation of propagation of shock waves through channel bends[J]. Computational Fluid Dynamics Journal, 1993,2(1):1-36.
  • 4Glimm J,SIAM J Sci Comput,1998年,19卷,703页

共引文献9

同被引文献24

  • 1柏劲松,谭华,李平,华劲松,戴诚达,陈森华.阻抗梯度飞片加载下的超高速发射二维数值模拟方法[J].计算物理,2004,21(4):305-310. 被引量:8
  • 2张学莹,赵宁.基于体积分数形式的多介质流动数值模拟[J].南京航空航天大学学报,2005,37(4):436-441. 被引量:4
  • 3郑建国,马东军,孙德军,尹协远.Mie-Grüneisen状态方程可压缩多流体流动的PPM方法[J].爆炸与冲击,2006,26(2):156-162. 被引量:1
  • 4UNVERDI S O and TRYGGVASON G. A front tracking method for viscous incompressible multifluid flows [ J ]. J. Goreput. Phys., 1992,100:25 -37.
  • 5SCARDOVELL R and ZALESKI R. Direct numerical simulation of free - surface and interfacial flow [ J ]. Annu. Rev. Fluid Mech. , 1999,31:567 -603.
  • 6ABGRALL R and KARNI S. Computations of compressible fluids[J]. J. Comput. Phys., 2001, 169:594-623.
  • 7SHYUE K M. A fluid -mixture type algorithm for compressible multicomponent flow with Mie - Gr uneisen equation of state. [J] J. Comput. Phys. , 2001,171:678-707.
  • 8SAUREL R and ABGRALL R. A muhiphase godunov method for compressible multifluid and multiphase flows [ J ]. J. Comput. Phys. , 1999, 150:5425-467.
  • 9WOODWARD P. COLLELA P. The piecewise parabolic method for gas - dynamics simulation [ J ]. J. Comput. Phys. , 1984, 54:174-201.
  • 10STRANG G. On the construction and comparison of difference schemes[J]. SIAM J. Numer. Anal. , 1968.5:506 - 517.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部