摘要
通过一条定理的证明 ,引入一个辅助函数ω(x) ,只要找出ω(x)与q(x)的关系 ,就可以求出变系数二阶线性齐次方程y″ +p(x)y′ +q(x)y =0的通解 .
This paper is about a general solution to the linear homogeneous differential equation“ y″+p(x)y′+q(x)y=0 ” The general key can be got from proving a theorem,leading into an auxiliary function ω(x) and finding out the relation between ω(x) and q(x)
出处
《河南教育学院学报(自然科学版)》
2004年第4期14-16,共3页
Journal of Henan Institute of Education(Natural Science Edition)
关键词
变系数
二阶线性齐次微分方程
近似解
精确解
非零解
通解
variable coefficient
second order and linear homogeneous differential equation
approximate solution
exact solution
untrivial solution
general solution