摘要
将粗集理论与神经网络结合起来设计出粗神经网络,用于对雷达目标数据进行融合,特别是对雷达目标进行识别。研究表明这种网络可以接受定性输入,即输入是一个范围或在观测时间内输入是变化的,从而大大提高雷达目标的识别率。粗集理论和神经网络结合起来将在雷达数据融合方面有着很好的应用前景。
This paper presents a data fusion method combing rough set theory with artificial neural network and applied to radar target recognition. Results of study show that the input of network could be qualitative, i.e, the values of input can be in a certain range or varied during the observation, as well as quantitative, then the ratio of classification can be greatly improved. The rough set neural network will find a wide application in radar data fusion and target recognition.
出处
《电光与控制》
北大核心
2005年第1期80-82,共3页
Electronics Optics & Control
关键词
雷达目标识别
神经网络
粗集理论
radar target recognition
neural network
rough set theory