期刊文献+

Zr基块状非晶的氢损伤与氢致滞后断裂 被引量:1

HYDROGEN DAMAGE AND DELAYED FRACTURE IN Zr BASE BULK METALLIC GLASS
下载PDF
导出
摘要 研究了Zr41.2Ti13.8Ni10Cu12.5Be22.5块状非晶在充氢过程中氢致滞后断裂规律以及氢鼓泡的形核、长大及破裂过程.结果表明,当充氢电流i<20 mA/cm2时,不出现氢损伤(鼓泡及微裂纹),但在恒载荷条件下能发生氢致滞后断裂,其归一化门槛应力强度因子为KIH/KIC=0.63.当i>20 mA/cm2后,无载荷下充氢会产生氢损伤,恒载荷下发生滞后断裂时KIH/KIC从0.63降为0.26.氢鼓泡(直径约为30 nm)形核时的内压pi≈3.6 GPa.随氢的进入,鼓泡不断长大;内压增大至pC≈3.9 GPa时,鼓泡就会解理扩展变成裂纹;但扩展20-30 μm后,内压下降从而止裂.当一定量原子氢进入氢鼓泡后,它又能解理扩展,从而在鼓泡边缘局部解理断口上可以观察到止裂线. Initiation, growth and breakage of hydrogen blistering and hydrogen-induced delayed fracture under constant load in bulk metallic glass Zr41.2Ti13.8Ni10CU12.5Be22.5 have been investigated. The results show that when charging current density i < 20 mA/cm(2), there are no hydrogen blisterings and microcracks on the surface of the specimens and the normalized threshold stress intensity factor is K-IH/K-IC=0.63. where K-IC = 62.2 MPa(.)m(1/2). When i greater than or equal to 20 mA/cm(2) hydrogen blisterings and microcracks appear in the specimen under no loading, while KIH/KIC decreases from 0.63 to 0.26. The critical pressure necessary for a stable blistering formation is p(i) approximate to 3.6 GPa, and that for cleavage propagation of the blistering is p(c) approximate to 3.9 GPa. The crack formed through blistering cracking will be arrested after propagating 20 to 30 mum., and the arrested crack will propagate again because of entering of hydrogen atoms. At last, the blistering with cracking will be broken and leave local cleavage fracture surface with arrested lines on the surface of the sample without loading.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2005年第1期99-102,共4页 Acta Metallurgica Sinica
基金 国家自然科学基金项目资助50271006~~
关键词 Zr基块状非晶 氢鼓泡 氢致滞后断裂 Zr base bulk metallic glass hydrogen blistering hydrogen-induced delayed failure
  • 相关文献

参考文献18

  • 1Viswanadham R K, Green J A S, Montague W G. Scr Metall, 1976; 10:229.
  • 2Kawashina A, Hashimoto K. Scr Metall, 1980; 14:41.
  • 3Ashock S, Stoloff N S, Glicksman M E, Slavin T. Scr Metall, 1981; 15:331.
  • 4Tong H S, Macur J E. Corrosion, 1982; 38:464.
  • 5Schroeder H W, Koster U. J Non-Cryst Solids, 1983; 56:213.
  • 6Namboodhlri T K, Ramesh T A, Singh G, Seghal S. Mater Sci Eng, 1983; 61:23.
  • 7Flis J, Ashok S, Stoloff N S , Duguette D S. Acta Metall,1987; 56:2071.
  • 8Lin J J, Perng T P. J Mater Sci Lett, 1991; 10:1443.
  • 9Lin J J, Perng T P. Metall Mater Trans, 1995; 26A: 197.
  • 10Elaiz N, Eliezer D. Adv Perform Mater, 1999; 6:5.

同被引文献71

  • 1单广斌,魏炳忱,李金许,乔利杰,褚武扬.氢对锆基块体非晶合金形变和开裂的影响[J].金属学报,2006,42(7):689-693. 被引量:4
  • 2刘欣,王敬丰,覃彬,聂俭,丁培道.非晶态镁基储氢合金的研究进展[J].材料导报,2006,20(10):120-122. 被引量:10
  • 3Mao Zongqiang(毛宗强1.Hydrogen Energya Green Energyin 21 Century(氢能-21世纪的绿色能源)[M].Beijing:Chemical Industry Press, 2005:1.
  • 4[Japan] Hydrogen Energy Association([日]氢能协会编).Translated by Song Yongchan(宋永臣),Ning Yadong(宁亚东)efal.HydrogenTechnology(氢能技术)[M].Beijing:SciencePress, 2009:1.
  • 5Buxbaum R E, Marker T L. JMembr Sci[J], 1993, 85(1): 29.
  • 6Nishimura C, Komaki M, Hwang Set al. J Alloy Compd[J], 2002, 330-332:902.
  • 7Zhang Y, Ozaki T, Komaki M et aL Scripta Mater[J], 2002, 47: 601.
  • 8Ozaki T, Zhang Y, Komaki Met al. lnt J Hydrogen Energ[J], 2003, 28:1229.
  • 9Hashi K, Ishikawa K, Matsuda T et al. JAlloy Compd[J], 2004, 368:215.
  • 10Hashi K, Ishikawa K, Matsuda T et aL Mater Trans[J], 2005, 46(5): 1026.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部