期刊文献+

平均跟踪性质与完全传递 被引量:4

The average-shadowing property and ergodicity
下载PDF
导出
摘要 Blank在研究混沌动力学时,提出了平均跟踪性质的概念,本文将这一性质拓展到紧致度量空间.设X是紧致度量空间,f:X→X为同胚.本文主要证明:若f具有平均跟踪性质且是Lyapunov稳定的,则f是完全传递的,但它不是拓扑弱混合. While researching chaotic dynamics, Blank has introduced the average-shadowing property. We extend the property to compact metric space. Let X is a compact metric space, f:X→X is a homoeomorphism. We prove that if f is Lyapunov stable with the average-shadowing property, it is totally transitive, but not topologically weakly mixing.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2005年第1期7-9,共3页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(10361001)
关键词 跟踪性 平均 紧致度量空间 同胚 性质 传递 混沌动力学 学时 证明 拓展 Homoeomorphism the average-shadowing property Lyapunov stable totally transitive topologically weakly mixing
  • 相关文献

参考文献7

  • 1Bowen R. Equilibrium states and the ergodic theory of Axiom A diffeomorphisms [ J ]. Springer - Verlag, 1975.68 - 87.
  • 2Yang R S. Pseudo- orbit tracing property and completely positive entropy[ J ]. Acta Math, Sinica, 1999,42:99 - 104( in Chinese).
  • 3Blank M L. Small perturbations of chaotic dynamical systems [ J ]. Russian Math Survey, 1989,44:1 - 33.
  • 4Zhang Y. On the average - shadowing property [ J ]. Acta Scientiarum Naturalium Universitatis Pekinensis,2001,37:648 -651.
  • 5Furstenberg H. Disjointness in ergodic theory, minimal sets, and a problemin Diophantine approximation[J]. Math System Theory,1967,1:1 -49.
  • 6Auslander J and Yorke J. Interval maps, factors of maps, and chaos[ J ]. Tohoku Math Journ, 1980,32:177 - 188.
  • 7Akin E, Auslander J and Berg K. When is a transitive map chaotic? Convergence in Ergodic Theory and Probability[M]. Ohio University Math Res Inst Pub, 5, De Gruyter,Berlin,1996.25 -40.

同被引文献32

  • 1王良平.强一致收敛下的初值敏感性与等度连续性[J].浙江大学学报(理学版),2012,39(3):270-272. 被引量:7
  • 2赵俊玲.平均跟踪与伪轨跟踪[J].高校应用数学学报(A辑),2004,19(3):311-314. 被引量:8
  • 3赵俊玲.强链回归集与强跟踪性[J].数学研究,2004,37(3):286-291. 被引量:9
  • 4韩英豪,邢春娜,金元峰.提升系统的强跟踪性[J].延边大学学报(自然科学版),2006,32(2):93-95. 被引量:5
  • 5[1]Blank M L.Metric properties of ε-trajectory of dynamical systems with stochastic behavior[J].Ergodic Theory Dynamical Systems,1988,8:365-378.
  • 6[2]Blank M L.Small perturbations of chaotic dynamical system[J].Russian Math Survey,1989,44:1-33.
  • 7[3]Sakai K.Diffeomorphisms with the average-shadowing property on two dimensional closed manifolds[J].Rocky Mountain J Math,2000,30(3):1129-1137.
  • 8BLANK M L. Small Perturbations of Chaotic Dynamical Systems[J]. Russian Math Survey, 1989,44:1-33.
  • 9SAKAI K. Diffeomorphisms with the Average-shadowing Property on two-dimensional Closed Manifolds[J]. Rocky Mountain J Math, 2000,30(3) : 1129-1137.
  • 10YANG R S. Topological Ergodicity and Topological Double Ergodicity[J]. Acta Math Sinica ,2003,46(3):555-560.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部