摘要
Effects of Ca2+ and Mg2+ on the CO2 corrosion behaviors of tube steel were studied in simulated oil-field environment.The influence of Ca2+and Mg2+ on the corrosion rate and morphologies of corrosion product layer was determined by scanning electron microscope and measuring mass loss.Potentiodynamic polarization and impedance spectroscopy were used to investigate the change of electrochemical characteristic parameters of corrosion product layer and corrosion dynamic process.The results show that with Ca2+ and Mg2+ in electrolyte,the morphologies and microstructures of corrosion product layer changed obviously,thus affecting the corrosion process.
Effects of Ca2+ and Mg2+ on the CO2 corrosion behaviors of tube steel were studied in simulated oil-field environment.The influence of Ca2+and Mg2+ on the corrosion rate and morphologies of corrosion product layer was determined by scanning electron microscope and measuring mass loss.Potentiodynamic polarization and impedance spectroscopy were used to investigate the change of electrochemical characteristic parameters of corrosion product layer and corrosion dynamic process.The results show that with Ca2+ and Mg2+ in electrolyte,the morphologies and microstructures of corrosion product layer changed obviously,thus affecting the corrosion process.
基金
Item Sponsored by National Natural Science Foundation of China(50231020)
National Key Fundamental Research and Development Project of China(G1999065004)