期刊文献+

Takesaki-Takai Duality Theorem in Hilbert C^*-Modules 被引量:1

Takesaki-Takai Duality Theorem in Hilbert C-Modules
原文传递
导出
摘要 In this paper,we generalize the Takesaki-Takai duality theorem in Hilbert C~*-modules; that is to say,if (H,V,U) is a Kac-system,where H is a Hilbert space,V is a multiplicative unitary operator on H(?)H and U is a unitary operator on H,and if E is an (?)-compatible Hilbert (?)-module, then E×(?)×(?)K(H),where K(H) is the set of all compact operators on H,and (?) and (?) are Hopf C~*-algebras corresponding to the Kac-system (H,V,U). In this paper,we generalize the Takesaki-Takai duality theorem in Hilbert C~*-modules; that is to say,if (H,V,U) is a Kac-system,where H is a Hilbert space,V is a multiplicative unitary operator on H(?)H and U is a unitary operator on H,and if E is an (?)-compatible Hilbert (?)-module, then E×(?)×(?)K(H),where K(H) is the set of all compact operators on H,and (?) and (?) are Hopf C~*-algebras corresponding to the Kac-system (H,V,U).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第6期1079-1088,共10页 数学学报(英文版)
基金 Supported by NSF 10301004,NSF 10171098 Yantai University PHD Foundation SX03B14
关键词 COACTION Crossed product Multiplicative unitary operator Hilbert C~*-module Coaction Crossed product Multiplicative unitary operator Hilbert C~*-module
  • 相关文献

参考文献14

  • 1Takesaki, M.: Duality for crossed products and the structure of von Neumann algebras of type Ⅲ. Acta Math., 131,249-310 (1973).
  • 2Takai, H.: On a duality for crossed products of C^*-algebras. J. Funct. Anal., 19, 25-39 (1975).
  • 3Vallin, J. M.: C^*-algbbres de Hopf et C^*-algbbres de Kac. Proc. London Math. soc., 50(3), 131-174 (1985).
  • 4Tomiyama, J.: Invitation to C^*-algebras and topological dynamics, World Scientific, Singapore, New Jersey,Hong Kong, 1987.
  • 5Baaj,S., Skandalis, G.: Unitaires multiplicatifs er dualite pour les produits croises de C^*-algebres. Ann.Sci. Ec. Norm. Sup., 26, 425-488 (1993).
  • 6Skandalis, G.: Operator algebras and duality, Proc. ICM-1990, vol 11, Math. Soc. Japan, Berlin, Heidelberg, New York, 997-1009, 1991.
  • 7wLance, E. C.: Hilbert C^*-modules, A toolkit for operator algebraists, Cambridge University Press, Cambridge, 1995.
  • 8Folland, Gerald B.: A course in abstract harmonic analysis, CRC Press, Boca Raton, Ann Arbor, London,Tokyo, 1995.
  • 9Zhang, X. X.: The description of Kac-system of multiplicative unitary operators, Science in China (Series A), 111(44), 1439-1445 (2001).
  • 10Woronowicz, S. L.: Compact matrix pseudogroups. Commun. Math. Phys., 111,613-665 (1987).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部