期刊文献+

两类高阶整系数线性微分方程解的增长性

THE GROWTH OF SOLUTIONS FOR TWO GLASSES OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS
下载PDF
导出
摘要 研究了两类整函数系数的K阶线性微分方程解的增长性,得到其超级的一些估计,所得结果改进了一些相关结果. In this paper, the growth of solutions of two classes of K-order linear differential equations with entire coefficients is investigated, and some estimates of the hyper-order of their solutions are obtained. The results obtained improve the related results of some authors.
出处 《华南师范大学学报(自然科学版)》 CAS 2004年第4期7-12,共6页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471048)
关键词 增长性 线性微分方程 整系数 高阶 超级 数系 整函数 改进 研究 估计 linear differential equation hyper order order
  • 相关文献

参考文献3

二级参考文献19

  • 1BANK S, LAINE I. On the oscillation theory of f""+Af=0 where A is entire[J]. Trans Amer Math Soc, 1982,273:356-363.
  • 2GAO Shi-an. On the complex oscillation of solutions of nonhomogeneous linear differential equations with polynomial coefficients[J]. Comment Math Univ Sancti Pauli, 1989,38:11-20.
  • 3CHEN Zong-xuan, YANG Chung-chun. Quantitative estimations on the zeros and growths of entire solutions of linear differential equations[J]. Complex Variables, 2000,42:119-133.
  • 4LAINE I. A note on the complex oscillation theory of non-homogenous linear differential equations[J]. Results in Math, 1990,18:282-285.
  • 5LAINE I. Nevanlinna Theory and Complex Differential Equations[M]. Berlin: Walter de Gruyter, 1993.
  • 6Boas RP Jr.Entire functions[]..1954
  • 7Bank S,Laine I.On the oscillation theory of f ″+A f = 0 where A is entire[].Transactions of the American Mathematical Society.1982
  • 8Yi HX,Yang CC.The Uniqueness Theory of Meromorphic Functions[]..1995
  • 9G. Frank,S. Hellerstein.On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients[].Proceedings of the London Mathematical Society.1986
  • 10Gundersen G.Finite Order Solutions of Second Order Linear Differential Equations[].Transactions of the American Mathematical Society.1988

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部