期刊文献+

二阶差分方程边值问题正解的存在性 被引量:4

Existence of positive solutions to second-order difference equations boundary value problem
下载PDF
导出
摘要 应用代数理论结合Krasnoselskii不动点定理,给出了边值问题△2u(t-1)=g(t,u(t-1),u(ft),u(0) =0,u(N+1)=0,T∈z(1,N)正解的存在性结果,将微分方程的相关结果推广到了差分方程. Combining algebra with Krasnoselskii fixed point theorem , the existence of positive solutions of following boundary value problem △2u(t - 1) = g(t,u(t - 1) ,u(t)) , u(0)=0,u(N+1)=0 t∈ Z(1,N) is concluded , so that the relevant results from differential equations can be spread to difference equations.
作者 罗力军
出处 《广州大学学报(自然科学版)》 CAS 2004年第6期501-503,共3页 Journal of Guangzhou University:Natural Science Edition
关键词 差分方程 边值问题 正解 difference equation boundary value problem cone positive solution
  • 相关文献

参考文献3

  • 1Agarwal R P. Difference equations and inequalities [ M]. New York: Marcel Dekker, 1992.
  • 2Wong P J Y. Positive solutions of difference equations with two-point right focal boundary conditions [J]. J MA A, 1998, 224:34- 58.
  • 3Wong P J Y, Agarwal R P. On the existence of solutions of singular boundary value problems for higher order difference equations[J]. Nord Aria, 1997, 28:277 - 287.

同被引文献6

  • 1Eloe P.W., Difference equation and multipoint boundary value problems, Proc Amer. Math. Soc. 1982, 86:253-259.
  • 2Merdivenci F., Two positive solutions of a boundary value problems for difference equations, J. Differ. Equations Appl., 1995,(1):263-270.
  • 3Merdivenci F.Two positive solutions of a boundary value problems for difference equations[J].Differ Equations Appl,1995,1:263-270.
  • 4Agarwal R P,Henderson J.Positive solution and nonlinear problems for third-order difference equation[J].Comput Math Appl,1998,36:347-355.
  • 5吴雄健.三阶非线性差分方程边值问题多个正解的存在性[J].湖南第一师范学报,2007,7(4):154-156. 被引量:2
  • 6张国栋,孙红蕊.一类二阶差分方程边值问题多个解的存在性[J].西北师范大学学报(自然科学版),2010,46(6):11-14. 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部