摘要
应用代数理论结合Krasnoselskii不动点定理,给出了边值问题△2u(t-1)=g(t,u(t-1),u(ft),u(0) =0,u(N+1)=0,T∈z(1,N)正解的存在性结果,将微分方程的相关结果推广到了差分方程.
Combining algebra with Krasnoselskii fixed point theorem , the existence of positive solutions of following boundary value problem △2u(t - 1) = g(t,u(t - 1) ,u(t)) , u(0)=0,u(N+1)=0 t∈ Z(1,N) is concluded , so that the relevant results from differential equations can be spread to difference equations.
出处
《广州大学学报(自然科学版)》
CAS
2004年第6期501-503,共3页
Journal of Guangzhou University:Natural Science Edition
关键词
差分方程
边值问题
锥
正解
difference equation
boundary value problem
cone
positive solution