期刊文献+

有限群的极大子群的正规指数

On the Normal Index of Maximal Subgroups in Finite Groups
下载PDF
导出
摘要 利用极大子群的正规指数的概念 ,得到有限群为 p -可解、可解的若干充要条件 .主要证明了如下结果 :设 p是 |G|的最大素因子 ,(1)对任意非幂零的极大子群M∈FG ={M|M为G的包含Sylow - p子群正规化子的c-极大子群 } ,若G满足下列三个条件之一 :(a)恒有 η(G∶M ) =|G∶M| ;(b)恒有 η(G∶M )无平方因子 ;(c)恒有 η(G∶M )为素数方幂 ;则G是 p-可解的 .(2 )以下命题等价 :①G是可解的 ;②对任意非幂零的极大子群M∈F′G ∩Fp,恒有 η(G∶M ) =|G∶M| ;③对任意非幂零的极大子群M ∈F′G ∩Fp,恒有 η(G∶M )为素数方幂 . By using the concept of normal index, some necessa ry and sufficient conditions for a finite group to be p-solvable and solvabl e are obtained. In this paper the following results are proved: Let p be t he largest divisor of the order of G, ⑴for any non-nilpotent maximal subgr oup M of G in F G*={M|M contains a normalizer of a Sylow- p subgroup of G, and M is c-maximal}, if G satisfyi ng one of the following three conditions: (a) η(G∶M)=|G∶M|;(b) η(G∶M) is square-free;(c)η(G∶M) is a power of a prime;then G is p-solvable. ⑵ the following are equivalent:①G is solva ble;②η(G∶M)=|G∶M| for any non-nilpotent maximal subgroup M o f G in F′ G∩F p; ③ η(G∶M) is a power of a prime for any non-nilpotent maximal subgroup M of G in F′ G∩F p.
出处 《北京建筑工程学院学报》 2004年第4期65-67,共3页 Journal of Beijing Institute of Civil Engineering and Architecture
关键词 有限群 正规指数 P-可解群 可解群 finite group normal index p-solvable group solvable group
  • 相关文献

参考文献7

  • 1郭秀云.有限群极大子群的正规指数[J].数学学报(中文版),1991,34(2):208-212. 被引量:12
  • 2Deskins W E. On maximal subgroup. Proceeding of Symponia in Pure Math[M]. Amer Math Soc 1959, 100-104.
  • 3Mukherjee N P, Bhattacharya Prabir.The normal index of a finite group[J].Pacific J Of Math, 1988,132: 143-149.
  • 4Khazal R, Mukherjee N P.A note on p- solvable and solvable finite groups[J].Internat. J Math & Math Sci 1994,17(4): 821-824.
  • 5Derek J S Nobinson.A course in the theory of groups[M].New York, Heidclbeg, Berlin. Springer-verlag, 1982.
  • 6Rose J.On finite insolvable groups with nilpotent maximal subgroups[J].J Algebra, 1977,48:182-196.
  • 7杨兆兴,王守信.有限群的极大子群的正规指数[J].山西大学学报(自然科学版),1997,20(3):271-274. 被引量:2

二级参考文献2

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部