期刊文献+

基于广义逆的张量积Said-Ball曲面降多阶逼近 被引量:2

Method of approximating tensor product Said-Ball surfaces through multi-degree reduction
下载PDF
导出
摘要 文章给出张量积 Said-Ball曲面降多阶逼近的一种方法 ,即将曲面的降多阶过程视为升阶的逆过程 ,利用广义逆矩阵的理论得到降阶曲面控制顶点的显式表示式 ,从而得到了用矩阵表示的降多阶张量积 Said-Ball曲面的控制顶点的显式表示式。在降多阶过程中 ,分别考虑了带角点高阶插值条件和不带角点插值条件的情形 。 This paper deals with a new method of approximating tensor product Said-Ball surfaces through multi-degree reduction. The process of degree reduction is regarded as the opposite process of elevation,then the theory of generalized inverse matrix is used to get the explicit representation of control points of the reduced multi-degree tensor product Said-Ball surface. During the multi-degree reduction process,two cases are considered— one is with the constraint of high-order interpolations over corners and the other is without any constraint. Numerical examples are also given.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期216-219,共4页 Journal of Hefei University of Technology:Natural Science
关键词 张量积Said—Ball曲面 降多阶 角点插值 tensor product Said-Ball surface multi-degree reduction corner interpolation
  • 相关文献

参考文献5

二级参考文献6

  • 1汪国昭.Bezier曲线、曲面的离散求交方法[J].浙江大学学报,1984,.
  • 2陈发来 丁友东.矩形域上参数曲面逼近[J].高等学校计算数学学报,1993,7.
  • 3寿华好.区间曲线、曲面理论及其应用[M].杭州:浙江大学,1998..
  • 4陈效群.区间Bezier曲线曲面造型[M].合肥:中国科学技术大学,1999..
  • 5刘利刚,王国瑾,寿华好.区间Bézier曲面逼近[J].计算机辅助设计与图形学学报,2000,12(9):645-650. 被引量:9
  • 6陈国栋,王国瑾.带端点插值条件的Bézier曲线降多阶逼近[J].软件学报,2000,11(9):1202-1206. 被引量:22

共引文献28

同被引文献17

  • 1郭清伟,朱功勤.张量积Bézier曲面降多阶逼近的方法[J].计算机辅助设计与图形学学报,2004,16(6):777-782. 被引量:18
  • 2陈国栋,王国谨.Multi-degree reduction of tensor product Bézier surfaces with conditions of corners interpolations[J].Science in China(Series F),2002,45(1):51-58. 被引量:19
  • 3张莉,唐烁.基于最小二乘法的张量积Said-Ball曲面降多阶逼近[J].大学数学,2006,22(5):67-72. 被引量:1
  • 4Hoschek,J.Approximate conversion of spline curves[J].Computer Aided Geometric Design,1987,4(1):59-66.
  • 5Eck,M.Degree reduction of Bézier curves[J].Computer Aided Geometric Design,1993,10(4):237-251.
  • 6Hu Shimin,Sun Jiaguang,Jin Tongguang,Wang Guozhao.Approximate degree reduction of Bézier curves[J].Tsinghua Science and Technology,1998,3(2):997-1000.
  • 7Lachance,M A.Chebyshev economization for parametric surfaces[J].Computer Aided Geometric Design,1988,5(3):195-208.
  • 8Bohem W,Farin G,Kahman J.A survey of curve and surfaces methods in CAGD[J].Computer Aided Geometric Design,1984,1(1):1-60.
  • 9Barnhill RR.Surface in computer aided geometric-design:a survey with new results[J].Computer Aided Geometric Design,1985,2(1/3):1-17.
  • 10Danneberg L,Nowacki H.Approximate conversion of surface representations with polynomial bases[J].Computer Aided Geometric Design,1985,2(2):123-131

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部