期刊文献+

侧向外延法生长的高质量GaN及其外延缺陷的观察(英文) 被引量:1

High Quality GaN Grown by Epitaxial Lateral Overgrowth Technique and Epitaxial Defects Observation
下载PDF
导出
摘要 在有条状SiO2 图形的GaN“模板”上,侧向外延方法生长了高质量的GaN。荧光显微镜的结果表明在SiO2 掩膜区有成核过程发生。原因可能是SiO2 的质量不高,为GaN的生长提供了一些成核中心。在GaN层的厚度达到 4. 5μm后,侧向的融合开始发生。侧向生长的速度与垂直生长速度几乎相同。在所有的SiO2 掩膜上方都形成了空洞。样品在 240℃熔融的KOH中腐蚀 13min。在SiO2 掩膜区生长的GaN,其腐蚀坑密度(相当于穿透位错密度 )减少到几乎为零。而在窗口区生长的GaN,腐蚀坑密度仍然很高,达到 108 cm-2量级。同时,我们发现具有不同窗口尺寸的样品在SiO2掩膜区上侧向生长的GaN的晶体质量基本相同,与窗口区的宽度几乎无关。室温光荧光结果表明侧向外延法生长的GaN中的晶格失配应力已被部分释放。 High quality GaN is grown by epitaxial lateral overgrowth(ELO) technique on SiO_(2~)-patterned GaN “template”. The results from luminescence microscope observation reveal that nucleation happens on the SiO_2 mask. After the thickness reaches about 4.5 μm, the coalescence starts. The lateral growth rate is almost the same as the vertical growth rate. Voids are formed on all of the SiO_2 mask area. ELO GaN is etched in molten KOH for 13 min at 240 ℃. The threading dislocation density is reduced to almost zero in the area on mask. And the threading dislocation density is still high in the area on windows. It is the order of 10~8 cm^(-2). Also we found that the qualities in masks area for (samples) with different window area size are similar and have no relation with window area size. The room temperature photoluminescence (PL) results indicate that the stress in ELO GaN has been released partially.
出处 《发光学报》 EI CAS CSCD 北大核心 2005年第1期72-76,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金(60276010) 国家"863"计划项目(2001AA313060,2001AA313110,2001AA313140)资助项目~~
  • 相关文献

参考文献10

  • 1Amano H, Sawaki N, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer[J]. Appl. Phys. Lett., 1986, 48(5):353-355.
  • 2Nakamuru S, Mukai T, Senou M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994, 64(13):1687-1689.
  • 3Narukawa S, Mukai T, et al. High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes [J].J. Appl. Phys., 1994, 76(12) :8189-8191.
  • 4Narukawa S, Senoh M, et al. Superbright green InGaN single-quantum-well-structure light-emitting diodes [J]. Jpn. J.Appl. Phys., 1995, 34(10B) :L1332-L1335.
  • 5Usui A, Sunakawa H, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy [J].Jpn. J. Appl. Phys., 1997, 36(7B):L899-L902.
  • 6Nam O H, Bremser M D, et al. Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy[J]. Appl. Phys. Lett., 1997, 71(18) :2638-2640.
  • 7Bremser D, Viaille M, et al. Mg-enhanced lateral overgrowth of GaN on patterned GaN/sapphire substrate by selective metal organic vapor phase epitaxy [J]. MRS Internet J. Nitride Semicond. Res. , 1998, 3:20-22.
  • 8Nakamura S, Senoh M, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices[J]. Jpn. J. Appl. Phys., 1997, 36(12A):L1568-L1571.
  • 9Hiramatsu K, et al. Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO) [J]. J. Cryst. Growth, 2000, 221(3) :316-326.
  • 10Fu Y, et al. Epitaxial lateral overgrowth of cubic GaN by metalorganic chemical vapor deposition [J]. J. Cryst. Growth,2001,225( 1 ) :45-49.

同被引文献15

  • 1竹有章,陈光德,谢伦军,唐远河,邱复生.MOCVD生长的InGaN合金的发光特性[J].发光学报,2005,26(5):602-606. 被引量:5
  • 2Nakamura S.First laser diodes fabricated from Ⅲ-Ⅴ nitride based materials[J].Mat.Sci.Eng.,1997,B43(1-3):258-264.
  • 3Nakamura S,Senoh M,Iwasa N,et al.High-brightness InGaN blue green and yellow light-emitting diodes with quantum well structures[J].Jpn.J.Appl.Phys.,Part 2,1995,34(7A):L797-L799.
  • 4Romano L T,McClusky M D,Van de Walle C G,et al.Phase separation in InGaN multiple quantum wells annealed at high nitrogen pressures[J].Appl.Phys.Lett.,1999,75(25):3950-3952.
  • 5Chichibu S.Spontaneous emission of localized excitons in InGaN single and multiquantum well structures[J].Appl.Phys.Lett.,1996,69(27):4188-4190.
  • 6Zhou X,Yu E T.Observation of In concentration variations in InGaN/GaN quantum-well heterostructures by scanning capacitance microscopy[J].Appl.Phys.Lett.,2005,86(20):2021131-1-2021131-2.
  • 7Kaplar R J,Kurtz S R,Koleske D D,et al.Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells[J].J.Appl.Phys.,2004,95(9):4905-4913.
  • 8Akasaki I.Nitride semiconductors-impact on the future world[J].J.Cryst.Growth,2002,237-239:905-911.
  • 9Chichibu S F,Abare A C,Minsky M S,et al.Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures[J].Appl.Phys.Lett.,1998,73(14):2006-2008.
  • 10Chow W W.Quantum-well width dependence of threshold current density in InGaN lasers[J].Appl.Phys.Lett.,1999,75(2):244-246.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部