期刊文献+

支板构型超燃冲压燃烧室流场数值模拟 被引量:4

Numerical simulations of flowfields in a scramjet combustor with a strut
下载PDF
导出
摘要 数值模拟了带凹腔的支板构型超燃冲压燃烧室内部的流场结构。在计算过程中, 控制方程采用了含组分守恒方程, 并与k ω双方程湍流模型紧耦合的质量平均Navier Stokes方程, 对方程中的对流项采用了空间为二阶精度的TVD格式, 扩散项则采用了二阶中心差分离散。采用在流体力学时间步内的当地积分法克服了非平衡源项的刚性问题, 保持了LU SSOR隐式求解算法的高效率。通过数值模拟, 对比研究了凹腔构型的位置、长深比 (S/H) 对燃料混合性能的影响。结果表明, 长深比大的凹腔增加了燃料在腔内的停留时间, 相应地改善了燃料的混合。位于燃料喷嘴之后的凹腔比位于下游的凹腔更有助于提高燃料的混合效率。 In the present paper, the internal flow fields in scramjet combustion chamber with strut and cavities were simulated numerically by using the Favre-Averaged Navier-Stokes equations with the k-ω two-equation turbulence model. The second order TVD scheme is used for the inviscid flux terms of the equations and a central difference is used for the diffusion terms. Furthermore, using the local integral of the nonequlibrium source terms within local fluid time step and the LU factorization technique, an implicit LU-SSOR hybrid arithmetic without computing the inversion of the iteration matrix is established, guaranteeing the high efficiency of the method in simulating nonequlibrium flow fields. During the simulations, the effects of cavity position and length-to-depth ratio on the performance of fuel mixing are studied comparatively. The results show that, the cavity with large ratio of length to depth increases the residual time of fuel in the cavity field, and accordingly improve the fuel/air mixing. Additionally, the cavity behind normal-wall fuel injectors will give more helps in enhancing the fuel/air mixing efficiency than the cavity locating at the downward far from the injectors does.
出处 《推进技术》 EI CAS CSCD 北大核心 2005年第1期5-9,共5页 Journal of Propulsion Technology
关键词 高超音速冲压发动机 燃烧室 支板 湍流 数值仿真 Hypersonic ramjet engine Combustion chamber Strut^+ Turbulent flow Numerical simulation
  • 相关文献

参考文献11

  • 1王晓栋.[D].绵阳:中国空气动力研究与发展中心,2001.
  • 2王晓栋,乐嘉陵.入口温度剖面对喷管流场结构的影响[J].推进技术,2002,23(4):283-286. 被引量:10
  • 3Semenov V L, Romankov O N. Operating process investigation of hydrogen-fueled scramjet combustor with strut fuel feed system[ R]. ISABE 97-7087.
  • 4Dufour E, Bouchez M. Computational analysis of a kerosene-fueled scramjet [ R ]. AIAA 2001 - 1817.
  • 5Kodera M, Sunami T, Nakahashi K. Numerical study of mixing and combustion process of a scramjet engine model[ R]. AIAA 2001 - 1868.
  • 6Siebenhaar A, Campbell B T, Nguyen T. Strutjet engine performance [ R ]. AIAA 99 - 4809.
  • 7Menter F R. Zonal two equation k-ω turbulence models for aerodynamic flows[ R]. AIAA 93 - 2906.
  • 8Yee H C, Klopfer G H, Montagne J L. High resolution shock capturing schemes for inviscid and viscous hypersonic flows[R]. NASA TM 100097, 1988.
  • 9Yoon S, Jameson A. An LU-SSOR scheme for the Euler and Navier-Stokes equations [ R ]. NASA CR 179556,1986.
  • 10Clutter J K, Mikolaitis D W, Shyy W. Effect of reaction mechanism in shock-induced combustion simulations [ R ].AIAA 98 - 0274.

二级参考文献9

  • 1[1]Mitani T,Tani K,Sato S,et al.Experimental validation of scramjet nozzle performance[R].AIAA 92-3290.
  • 2[2]Tomioka S,Hiraiwa T,Mitani T,et al.A study on boundary layer in a scramjet nozzle operating under high enthalpy conditions[R].AIAA 94-2820.
  • 3[3]Pierce M A,Ely W L.A computational exploration of the importance of three-dimensionality,boundary layer development,and flow chemistry to the prediction of scramjet nozzle forces and moments[R].AIAA 91-5059.
  • 4[4]Lindblad I A A,Crnland T A,Cambier J L.A study of hypersonic afterbody flowfields[R].AIAA 97-2289.
  • 5[5]Lam D W.Use of the PARC code to estimate the off-design transonic performance of an over/under turboramjet nozzle[R].NASA TM 106924,1995.
  • 6[6]Yee H C,Klopfer G H,Montagne J L. High resolution shock capturing schemes for inviscid and viscous hypersonic flows[R].NASA TM 100097,1988.
  • 7[7]Yoon S,Jameson A. An LU-SSOR scheme for the Euler and Navier-Stokes equations[R].NASA CR 179556,1986.
  • 8[8]Law C H.Two-dimensional compression corner and planar shock wave interactions with a supersonic,turbulent boundary layer[R].ARL TR 75-0157.
  • 9[9]Baldwin B S,Lomax H.Thin layer approximation and algebraic model for separated turbulent flows[R].AIAA 78-257.

共引文献10

同被引文献31

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部