摘要
根据图像的相关性和连通性原理,利用图像各部分的梯度信息,基于原梯度倒数加权平滑算法,提出了一种改进的梯度倒数加权平滑算法。处理结果表明,改进算法较原算法能够更好地去除椒盐和随机噪声,同时较好地保持了图像的边缘和细节信息,处理过程的运算复杂度与原算法相当。改进的梯度倒数加权平滑算法为目标识别、图像分割等后继处理与分析提供了有力的支持。
Based on the theory of relativity and connectivity of image and characteristic of each part, the paper presents a new improved gradient inverse weighting smoothing algorithm. The results shows that the improved algorithm can preserve the image edge and details perfectly and it, comparing to the old algorithm, can restrain the salt & pepper noise and impulse noise more efficiently. Furthermore, the running time of the improved algorithm is almost equal to the old one’s. It provides powerful supports for later procession and analyses, such as object identification, image segmentation and so on.
出处
《计算机应用研究》
CSCD
北大核心
2005年第3期153-154,157,共3页
Application Research of Computers
基金
国家"863"计划资助项目 (2001AA132050 03)
国家自然科学基金(50099620)委员会
长江水利委员会资助项目
关键词
梯度倒数加权
相关性
图像平滑
Gradient Inverse Weight
Relativity
Image Smoothing