1Hifi M, Ouafi R. A best-first branch-and-bound algorithm for orthogonal rectangular packing problems [ J ]. International Transactions in Operational Research, 1998,5 : 345- 356.
2Schnecke V, et al. Hybrid genetic algorithms for constrained placement problems[J]. IEEE Transactions on Evolutionary Computation, 1997,1 : 266-277.
3Scholz D, et al. STATS: A slicing tree and tabu search based heuristic for the unequal area facility layout problem[J]. European Journal of Operational Research,2009,197 (1) : 166- 178.
4Wascher G, et al. An improved typology of cutting and packing problems [J]. European Journal of Operational Research, 2007,183 : 1109- 1130.
5Fowler R J,et al. Optimal packing and covering in the plane are NP-complete [J]. Information Processing Letters, 1981,12 (3) : 133- 137.
6Beasley J E. Algorithms for unconstrained two- dimensional guillotine cutting[J]. Journal of the Operational Research Society, 1985,36 : 297- 306.
7Bortfeldt A. A reduction approach for solving the rectangle packing area minimization problem [J]. European Journal of Operational Research, 2013, 224:486-496.
8Mumford-Valenzuela C L,et al. Heuristics for largestrip packing problems with guillotine patterns: An empirical study. Metaheuristics: Computer Decision- Making [M]. Kluwer Academic Publishers, 2003: 501-522.
9Burke E K,et aI. A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock- cutting problem [ J ]. INFORMS Journal on Computing, 2009,21 : 505- 516.
10Kenmochi M, et al. Exact algorithms for the two- dimensional strip packing problem with and without rotations[J]. European Journal of Operational Research, 2009,198 : 73 -83.