期刊文献+

交错叠层型介质栅电磁带隙结构的特性 被引量:2

Characteristics of electromagnetic band-gap structure with stratified crossed dielectric gratings
下载PDF
导出
摘要 用平面波展开法分析计算了适合三维应用的正交和斜交叠层型电磁带隙 (EBG)结构。提供了阻带宽度与各结构、材料参数的关系曲线,为工程设计提供了优 选结构的参考数据。从大量计算数据中归纳出:(1)这两种结构都不存在三维全方 向带隙;(2)对于传播方向与层面的法线的夹角不超过一定范围(约20°)的平面电磁 波存在公共阻带;(3)对于传播方向与层面的夹角不超过一定范围(约14°)的平面电 磁波,60°斜交介质栅在两个约120°的角域内(分角线沿菱形栅格的短对角线)也存 在公共阻带,正交介质栅结构逊于斜交介质栅结构;(4)上述传播方向基本垂直于和 基本平行于层面两种情况下的各自的公共阻带,随着传播方向从角域的中心向边缘 改变,由包含到交叠到分立,取决于层叠介质栅的具体结构和媒质参数。对某文献中 的柴堆式EBG结构进行了验证性仿真,所得结果与文献中的数据相符。 In this paper, the band-gap characteristics of 3-D EBG structure consisting of orthogonal or non-orthogonal stratified dielectric gratings were analyzed and calculated by using the method of plane waves expansion. The curves of stop-bandwidth vs. geometric and constitutive parameters were provided as the optimal structure data for engineering design. The conclusions are summarized as: (1) Both orthogonal grating structure and non-orthogonal grating structure do not possess a complete band-gap for all wave-vectors; (2) For the wave-vector around the normal of grating-plane (&le20°), a common stop-band exists; (3) For the wave-vector close to the grating-plane (&le14°) within two120° in azimuth (while the bisector is parallel to the shorter diagonal of rhombic grating-net) of the non-orthogonal structure, a common stop-band exists too, which better than orthogonal one; (4) The common stop-bands in the case-2 and in case-3 are involved, then overlapped, and then separated each other, when the wave-vector is changed from the center to edge of valid angular region, and quantitatively depend on the geometric and constitutive parameters of gratings. To verify validity of the algorithm, the dielectric woodpile EBG structure was analyzed and the computational results were almost the same as the data in the reference.
出处 《电波科学学报》 EI CSCD 北大核心 2005年第1期8-14,共7页 Chinese Journal of Radio Science
基金 国家自然科学基金(No.60071003) 江苏省自然科学基金(No.BK2003054)资助项目
关键词 电磁带隙(EBG)结构 三维周期结构 介质栅 色散曲线 带隙特性 Dielectric devices Dispersion (waves) Electromagnetic field effects Structural optimization Three dimensional
  • 相关文献

参考文献7

  • 1施晓琼,章文勋,郑龙根.二维介质PBG结构的工程设计[J].电波科学学报,2002,17(5):467-472. 被引量:9
  • 2J D Joannopoulos, R D Mead, J N Winn. Photonic Crystals Molding the Flow of Light[M]. Princeton University Press ,1995.
  • 3Mauricio E Pilleux et al. 3-D photonic bandgap structures in the microwave regime [J]. Rapid Prototyping Journal, 2002,8(1): 46-52.
  • 4S Satpathy and Z Zhang. Theory of photon bands in three-dimensional periodic dielectric structures [ J ].Phys. Rev. Lett. 1990,64 (11) :2646-2649.
  • 5S G Johnson and J D Joannopoulos. The MIT photoniebands package[CP], http://abinitio, mit. edu/mpb/.
  • 6Z Zhang and S Satpathy. Electromagnetic wave propagation in periodic structures: Bloch wave solution of maxwell's equation [J]. Phys. Rev. Lett. 1990, 65(21) :2650-2653.
  • 7G S Smith, M P Kesler and J G Maloney. Dipole antennas used with all-dielectric, woodpile photonicbandgap reflectors: Gain, field patterns, and input impalance[J]. Microwave and Optical Technology Letters, 1999, 21(3): 191-196.

二级参考文献8

  • 1[1]S Satpathy , and Z Zhang.Theory of photon bands in three-dimensional periodic dielectric structures[J]. Phys. Rev. Lett. 1990,64 (11):2646~2649.
  • 2[2]S L McCall , P M Platzman ,R Dalichaouch , D Smith and S Schultz.Microwave propagation in two dimensional dielectric lattices[J]. Phys. Rev. Lett. 1991,67(15):2017~2020.
  • 3[3]K M Leung and Y F Lin.Full vector wave calculation of photonic band structures in face centered-cubic dielectric media[J]. Phys. Rev. Lett. 1990,65(21):2646~2649.
  • 4[4]Z Zhang and S Satpathy.Electromagnetic wave propagation in periodic structures: bloch wave solution of maxwell's equation [J]. Phys. Rev. Lett. 1990,65(21):2650~2653.
  • 5[5]Shanhui Fan,Pierre R Villeneuve ,and J D Joannopoulos.Large omnidirectional band gapg in metallo-dielectric photonic crystals[J]. Phys. Rev. B, Condens.Matter, 1996-Ⅱ,54(16):11245~11251.
  • 6[6]L G Zheng and W X Zhang.Study on bandwidth of 2-D dielectric PBG material[J].in , (ed..by A. Priou & T. Itoh) to be appeared EMW Publishing, 2002.
  • 7[7]S G Johnson and J D Joannopoulos.The MIT photonic-bands package. from Internet Homepage http://abinitio.mit.edu/mpb/ ]
  • 8[8]J D Joannopoulos, R D Mead, J N Winn.Photonic crystals molding the flow of light.Princeton University Press,1995 .

共引文献8

同被引文献20

  • 1曹义,程海峰,周永江,李永清,才鸿年.一种新型结构吸波材料的制备[J].国防科技大学学报,2005,27(1):44-46. 被引量:7
  • 2赵小莹,周乐柱.一种新型的可调性能的铁氧体EBG的特性分析[J].北京大学学报(自然科学版),2006,42(3):375-379. 被引量:1
  • 3[2]Lee C Y,Song H G,Jang K S,et al.Electromagnetic interference shielding efficiency of polyaniline mixture and multiplayer films[J].Synth Mentais,1999 (102):1346~1349.
  • 4[3]Huang C Y.The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fiber composites[J].Eur Polym J,2000(36):2729~2737.
  • 5R Garg, P Bhartia, I Bahl, A htipiboom. Microstrip Antenna Design Handbook [M]. Boston: Artech House, 2001.
  • 6Keigo Iizuka. Elements of photonics [M]. USA.. John Wiley & Sons Inc, 2002.
  • 7A P Feresidis, J C Vardaxoglou. High gain planar antenna using optimized partially reflective surfaces [J].IEE Proc:Microw. Anten.& Propag. 2001, 148(6): 345-350.
  • 8R Sauleau, et al.. Low-profile directive quasi planar antennas based on millimeter wave Fabry-Perot cavities[J]. IEE Proc.-Microw. Anten. & Propag. 2003,150(4) : 274-278.
  • 9S Wang, A P Feresidis, G Goussetis, J C Vardaxoglou, Low profile resonant cavity antenna with artificial magnetic conductor ground plane [J]. Electronics Letters, 2004, 40(7): 405-406.
  • 10D R Jackson, N G Alexopoulos. Gain enhancement methods for printed circuit antennas [J]. IEEE trans.on Anten. & Propag. 198,5, 33(9): 976-987.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部