期刊文献+

共轭A-调和张量的双权Hardy-Littlewood不等式 被引量:1

TWO-WEIGHTED HARDY-LITTLEWOOD INEQUALITY FOR A-HARMONIC TENSORS
下载PDF
导出
摘要 本文证明了共轭A-调和张量的局部双权积分不等式,此结果类似于共轭调和函数的古典Hardy-Littlewood不等式.作为局部结果的应用,还证明了John域上的共轭A-调和张量的全局双权积分不等式. This paper proves a local two-weighted integral inequality for conjugate A-harmonic tensors similar to the Hardy and Littlewood integral inequality for conjugate harmonic functions. Then by using the local two-weighted integral inequality, the authors prove a global two-weighted integral inequality for conjugate A-harmonic tensors in John domains.
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第1期113-120,共8页 Chinese Annals of Mathematics
关键词 张量 HARDY-LITTLEWOOD不等式 A-调和方程 John域 Tensor, Hardy-littlewood inequality, A-harmonic equation, John domain
  • 相关文献

参考文献7

  • 1Bao Gejun, Ar(λ)-weighted integral inequalities for A-harmonic tensors [J], J. Math.Anal. Appl., 247(2000), 466-477.
  • 2Bao Gejun & Ding Shusen, Invarianee properties of Lφ(u)-averaging domain under some mappings [J], J. Math. Anal. AppL, 269(2001), 341-352.
  • 3Bao Gejun, Ding Shusen & Ling Yi,L(φ, u):averaging domain and their geometric characterizations [J], Chinese Journal of Contemporay Mathematics, 4(2000), 375 -386.
  • 4Nolder, C. A., Hardy-Littlewood theorems for A-harmonic tensors [J], Illinois J. Math.,43(1999), 613-631.
  • 5Hardy, G. H. & Littlewood, J. E., Some properties of conjugate functions [J], J. Reine.Angew. Math., 167 (1932), 405-423.
  • 6Iwaniec, T. & Nolder, C. A., Hardy-Litterwood inequality for quasiregular mappings in certain domains in R^n[J], Ann. Acad. Sci. Fenn. Set. A. I. Math., 10(1985), 267-282.MR 87d: 30022.
  • 7Garnett, J. B., Bounded Analytic F~nctions [M], New York, Academic Press, 1970.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部