期刊文献+

关于间隔不变性与洛仑兹变换的几点注记 被引量:2

Notes on the Invariance of the Interval
下载PDF
导出
摘要 两个事件之间隔不变性(Δs )2=(Δs)2是狭义相对论的两个基本原理与时空的均匀性及空间各向同性之直接推论;间隔不变性(ds )2=(ds)2=-dx μdx μ=-dxμdxμ给出闵可夫斯基四维空间的度规,决定了狭义相对论的时空性质;由于洛仑兹变换可由间隔不变性直接推出,所以,洛仑兹变换及伽利略变换都是对两个事件之空间、时间坐标差Δxμ与Δx μ而言的;有时,利用间隔不变性讨论问题比利用洛仑兹变换更简便. The invariance of interval between two point events is directly dervied from Einstein's two postulates of the special theory of relativty, and the uniformity of the time and the uniformity and isotropy of space; the invariant interva(ds)~2=(ds)~2give the 'metric' in the Minkowski-space, and it determine the properties of the time and space in the special theory of relativty; because te Lorentz transformation is a consequence of the invariance of the interval between two events, therefore, the Lorentz and the Galiean transformation is transformation conceming the spatial and temporal separation Δx_μ to Δx~_μ between two events on transition from one inertial frame of reference to another frame; sometime it is easier to think in terms of the invariant interval than in terms of transformation.
出处 《内江师范学院学报》 2004年第6期12-16,共5页 Journal of Neijiang Normal University
关键词 点事件 参考事件 间隔不变性 洛仑兹变换 伽利略变换 the point event the point event of reference the invariance of the interval Lorentz transtomation Galiean transformation
  • 相关文献

参考文献8

  • 1[2]V.A. Ugarov, Special Theory of Relativity [M]. Moscow: Mir Publishers, 1979. 60-68.
  • 2[5]W. K. H. Panofsky, M. Phillips. Classical Electricity and Magnetism [M]. Reading MA. Addison-Wesley, 1962 2nd. ed. 293-296.
  • 3[7]阚仲元. 电动力学教程 [M]. 北京: 高等教育出版社,1979. 199.
  • 4[9]L. Eyges. The Classical Electromagnetic Field [M]. Reading MA: Addison-Wedley, 1972. 215-217.
  • 5[10]R. K. Wangsness. Electromagnetic Fields [M]. 2nd. ed. New York: Wileys, 1986. 500.
  • 6[13]K.W. Ford. Classical and Modern Physics [M]. Vol. 3 New York: Wileys, 974-1006.
  • 7[14]P. Roman. Theory of Elementary Particles [M]. Amsterdam: North-Holland, 1960. 37.
  • 8梁灿彬.相对论的几何表述[J].大学物理,1998,17(5):2-6. 被引量:8

二级参考文献1

共引文献8

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部