期刊文献+

命题逻辑定理自动证明的直证式消解原理 被引量:1

Principle of Direct-Proof Resolution for Automatic Propositional Logic Theorems Proving
下载PDF
导出
摘要 消解算法对命题逻辑定理自动证明是普遍能行的,但现行消解证明只能归属于反证法。本文提出直证式消解原理,从析取范式能否消解出最简恒真式来判定和证明定理。其消解规则是原消解规则的对偶定理,消解过程中每步得式也都是原消解过程相应得式的否定式。只须赋予新的逻辑涵义,消解的集合表达形式仍可使用。直证式消解算法也具有可靠性、完全性、能行性,然而剔除了反证步骤,更简明直接。 The method of resolution is universally effective to prove inner theorems of propositional logic automatically,but current one is a refutation procedure.In this paper,a principle of direct-proof resolution is presented,by which the theorems are decided and proved just on the basis of educing a simplest tautology from their disjunctive normal forms.Its resolution rule is duality theorem of old one.Each formula in new resolution processes is the negation formula of that in old resolution.The set form of resolution can still be used,as new logic meaning explains it properly.The algorithm of direct-proof resolution remains soundness,completeness and effectiveness.And abandoning the apagogic steps,it is more simple and direct.
作者 杨冠平
出处 《信息工程大学学报》 2004年第4期32-34,共3页 Journal of Information Engineering University
关键词 逻辑定理 自动证明 直证式 消解原理 能行算法 logic theorem automatic proving direct-proof principle of resolution effective decision procedure
  • 相关文献

参考文献3

  • 1[1]胡世华,杨东屏.中国大百科全书·数学卷[M].北京:大百科全书出版社,1988.
  • 2[2]莫绍揆.递归论[M].北京:科学出版社,1997.
  • 3[3]Anil Nerode, Richard A Shors. Logic for Applications [ M ].New York: Springer-Verlag, 1997.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部