期刊文献+

整数距离图G(D_(m,2))的点线性荫度 被引量:2

The vertex linear arboricity of the integer distance graph G(D_(m,2))
下载PDF
导出
摘要 整数距离图G(D)以全体整数为顶点集 ,顶点u ,v相邻当且仅当 |u -v|∈D ,其中D是一个正整数集 .对于m 11,设Dm ,2 ={ 1,2 ,… ,m} \{ 2 } ,得到了G(Dm ,2 )的点线性荫度的上界和下界并决定出了它在某些特殊的m上的确切值 . An integer distance graph is a graph G(D) with the set of all integers Z as vertex set and two vertices u,v∈Z are adjacent if and only if |u-v|∈D where the distance set D is a subset of positive integers. Let D m,2={1,2,…,m}\{2} for m11. In this paper, an upper bound and a lower bound of the vertex linear arboricity of G(D m,2) are obtained and the exact values of it is determined for some special values m.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2004年第6期67-71,77,共6页 Journal of Shandong University(Natural Science)
关键词 整数距离图 点线性荫度 路着色 integer distance graph vertex linear arboricity path coloring
  • 相关文献

参考文献12

  • 1M Matsumoto. Bounds for the vertex linear arboricity[J]. J Graph Theory, 1990,14:117~ 126.
  • 2W Goddard. Acyclic coloring of planar graphs[J]. Discrete Mathematics, 1991,91: 91 ~ 94.
  • 3K Poh. On the linear vertex-arboricity of a planar graph[J]. J Graph Theory, 1990,14:73~ 75.
  • 4J Akiyama, H Era, S V Gerracio, et al. Path chromatic numbers of graph[J]. J Graph Theory, 1989, 13:569~ 579.
  • 5G J Chang, D D-F Liu, X D Zhu. Distance graphs and T-coloring[J]. J Comb Theory, Series B, 1999,75:259 ~ 269.
  • 6J J Chen, G J Chang, K C Huang. Integer distance graphs[J]. J Graph Theory, 1997,25: 287~ 294.
  • 7R B Eggleton, P Erdos, D K Skilton. Coloring prime distance graph[J]. Graphs and combinatorics, 1990, 6:17~ 32.
  • 8A Kemnitz, H Kolbery. Chromatic numbers of integer distance graphs[J]. Discrete Mathematics, 1998,191:113 ~ 123.
  • 9A Kemnitz, M Marangio. Chromatic numbers of integer distance graphs[ J]. Discrete Mathematics, 2001, 233:239 ~ 246.
  • 10A Kemnitz, M Marangio. Colorings and list colorings of integer distance graphs[ J], Congressus Numerations, 2001,151:75 ~ 84.

同被引文献10

  • 1左连翠,李霞.距离图的点荫度[J].山东大学学报(理学版),2004,39(2):12-15. 被引量:3
  • 2Alon N, Mcdiarmid C, Reed B. Star arboricity[J]. Combinatorica, 1992,12: 375-380.
  • 3Chartrand G, Kronk H V, Wall C E. The point arboricity of a graph[J]. Israel J. Math, 1968, 6:169 - 175.
  • 4Chen J J, Chang G J, Huang K C. Integer distance graphs[J]. J Graph Theory, 1997, 25:287- 294.
  • 5Catlin P A, Lai H -J. Vertex arboricity and maximum degree[J]. Discrete Mathematics, 1995,141:37 - 46.
  • 6Eggleton R B, Erdos P, Skilton D K. Colouring the real line[J]. J Combin Theory, Ser B, 1985, 39:86 - 100.
  • 7Jφrgensen L K. Vertex partitions of K4,4-Minor free graphs[J]. Graphs and Combinatorics, 2001,17:265 - 274.
  • 8Kronk H V, Mitchem J. Critical point-arboricity graphs[J]. J London Math Soc, 1975, 9(2) :459 - 466.
  • 9Skrekovski R. On the critical point-arboricity graphs[ J]. J Graph Theory, 2002, 39:50- 61.
  • 10Zuo L C, Wu J L, Liu J Z. The vertex linear arboricity of an integer distance graph with a special distance set[ J]. Ars Combinatoria, to appear.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部