期刊文献+

关于PMM环(英文)

On PMM Rings
下载PDF
导出
摘要 定义了PMM环.环R称为PMM环,若对任何Morita相似于R的环S,存在m,n∈N,使得Mm(S)同构于Mn(R).证明了如下结果:环R是PMM环当且仅当任给 R的投射生成元P,存在m,n∈N以及R上的Picard投射生成元Q,使得Pm 同构于Qn.具有VBN性质的PMM环是T2 环;具有IBN性质的PM环是T1 环.若交换环R是PMM环,则R是不可分解的且R的Picard群是幂可除的.特别地,Dedekind整环 R是 PMM环当且仅当 R的Picard群是幂可除的. The PMM rings are defined and studied in this paper.A ring R is called a PMM ring if for any ring S which is Morita similar to R,M m(S) is isomorphic to M n(R) for some n,m∈N. The following results are proved in this paper.A ring R is a PMM ring if and only if whenever given a progenerator P over R, there exist m,n∈N and some Picard progenerator Q over R such that P m is isomorphic to Q n. PMM rings with VBN property are just T 2-rings;and with IBN property are T 1-rings. If R is a commutative PMM ring,then R is indecomposable and the Picard group of R is power divisible.In particular,a Dedekind domain R is a PMM ring if and only if the Picard group of R is power divisible.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2005年第1期32-41,共10页 JUSTC
关键词 Morita相似 投射生成元 Morita矩阵环 PMM环 Morita similar progenerator Morita matrix ring PMM ring
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]Lam T Y. Serre' s Conjecture [ M ]. Berlin:Springer-Verlag, 1978. 23-33.
  • 2[2]Lam T Y. A First Course in Noncommutative Rings [ M]. Berlin: Springer-Verlag, 1997.
  • 3[3]Rosenberg J. Algebraic K-theory and its applications [M]. New York: Springer-Verlag,1996. 1-58.
  • 4[4]Vaserstein L N. Bass's first stable range condition [J]. J. of Pure and Appl. Algebra,1984, 34: 319-330.
  • 5[5]Vaserstein L N. Stable rank of rings and dimensionality of topological spaces [ J ]. Functional Anal. Appl. , 1971, (5): 102-110.
  • 6[6]Silvester J R. Introduction to Algebraic K-Theory [M]. Chapman Hall: Springer-Verlag,1981.
  • 7[7]Wu Tong-suo and Xu Yong-hua. On the stable range condition of exchange rings [J].Comm. Algebra, 1997, 25 (7): 2355-2363.
  • 8[8]Jacobson N. Basic Algebra Ⅱ [M]. W H Freeman: Springer-Vedag, 1989.
  • 9[9]Swan R G. Vector bundles and projective modules [ J ]. Transaction of American Mathematics Society, 1962, 105: 264-277.
  • 10郭学军,宋光天.On Diagonalization of Idempotent Matrices over APT Rings[J].Journal of Mathematical Research and Exposition,2001,21(1):21-26. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部