期刊文献+

加权K-泛函和Fourier-Chebyshev展开的Riesz型平均( 英文)

A Weighted K-functional and the Riesz-Type Means from Fourier-Chebyshev Expansion
下载PDF
导出
摘要 对 1 p +∞ ,r∈N+,建立了下列等价关系 :‖w(R(T)n -I) rf‖ p~K2r(f ,n- 2r) w ,p~‖w(R(T)n ,rf - f)‖p,其中权函数w(x) =(1-x2 ) - 12 p,R(T)n ,r(f ,x) =∑nk =0 (1- k2rn2r)ak(f)Tk(x)是函数 f的Fourier Chebyshev展开的r阶Riesz型平均 ,R(T)n =(f ,x) =R(T)n ,1(f ,x) ,K2r(f ,tr) w ,p是一个K 泛函 ,定义为 :K2r(f ,tr) w ,p=infg∈C2r[-1,1](‖w(f - g)‖p+tr‖wP(D) rg‖p) 。 For 1p+∞ and r∈N +, The following equivalent relationship is established. ‖w(R (T) n-I) rf‖ p~K 2r (f,n -2r ) w,p ~‖w(R (T) n,r f-f)‖ p, where the weight function w(x)=(1-x 2) -12p , R (T) n,r (f,x)=∑nk=0(1-k 2r n 2r )a k(f)T k(x), is the Riesz type means of order r of Fourier Chebyshev expansion of f and K 2r (f,t r) w,p is a new weighted K functional defined by K 2r (f,t r) w,p = inf g∈C 2r [-1,1] (‖w(f-g)‖ p+t r‖wP(D) rg‖ p), Where the differential operator P(D)=1-x 2ddx1-x 2ddx .
作者 俞国华
出处 《宁波大学学报(理工版)》 CAS 2004年第4期429-433,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
关键词 K-泛函 Fourier-Chebyshev展开 Riesz型平均 K functionals Fourier Chebyshev expansion Riesz type means
  • 相关文献

参考文献7

  • 1Totik V. Approximation by bernstein polynomials[J]. Amer J Math, 1994,116:995 ~ 1 018.
  • 2Chen W, Ditzian Z, Ivanov K. Strong converse inequality for the Bernstein-Durrmeyer operator[ J]. J Approx Theory, 1973,75:25 ~ 43.
  • 3Ditzian A. A K-functional and the rate of convergence of some linear polynomial operators [ J ]. Proc Amer Math Soc,1996,124:1 773 ~1 781.
  • 4Ky N X. On approximation of functions by polynomials with weight[J]. Act Math Hung,1992,5 911 ( 1,2) :49~58.
  • 5Pollard H. The mean convergence of orthogonal series,Ⅲ [J]. Duke Math J,1949,16:189 ~ 191.
  • 6Trebels W. Multipliers for-bounded fourier expansions in Banach spaces and approximation theory [ J ]. Lecture Notes in Math,1973:329.
  • 7Ditzian Z, Totik V. Moduli of Smoothness [ M ]. New York: Springer-Verlag, 1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部