期刊文献+

基于RBF神经网络提高压力传感器精度的新方法 被引量:14

A New Method to Improve Pressure Sensor Precision Based on RBF Neural Network
下载PDF
导出
摘要 传感器的温度漂移普遍存在 ,提出了一种新的补偿方法。用智能温度传感器DS18B2 0作为辅助传感器 ,结合主传感器测量变量 ,利用径向基函数 (RBF)神经网络构建双输入单输出网络模型 ,采用带遗忘因子的梯度下降算法实现了压力传感器高精度温度补偿 ,比普通补偿方法精度提高了 2~ 5倍。 As temperature drift exist in many sensors, a new method of sensor compensation is put forward. Intelligent temperature sensor DS18B20 is adopted as auxiliary sensor. A network model with two inputs and single output is constructed by radial basis function neural network. The two inputs include DS18B20 sensor and a main sensor. High precision temperature compensation of pressure sensor is achieved by gradient descend algorithm with a momentum factor in this network model. Measurement precision is improved 2~5 times comparing with general compensation method.
出处 《传感技术学报》 CAS CSCD 2004年第4期640-642,共3页 Chinese Journal of Sensors and Actuators
关键词 压力传感器 精度 温度补偿 径向基函数神经网络 温度传感器DS18820 pressure sensor precision temperature compensation radial basis function neural network temperature sensor DS18B20
  • 相关文献

参考文献3

  • 1Monica Bianchini. Learning without local minim in radial basis function networks[J]. IEEE Trans. On Neural Networks,1995,6(3): 749-755.
  • 2Yao Xin. Evolving artificial neural networks[J]. Proceedings of the IEEE,1999,87(9):1432-1447.
  • 3Catelsni M, Fort A. Fault diagnosis of electronic analog circuit using a radial basis function network classifier [J]. Measurement, 2002,28: 147-148.

同被引文献85

引证文献14

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部