期刊文献+

多孔介质中两相不可压缩可混溶驱动问题的动态混合元方法及其特征修正格式

THE DYNAMIC MIXED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS MEDIA
原文传递
导出
摘要 许多依赖时间的问题涉及到局部化现象,如突出的前沿位置、激波、边界层等, 其位置随时间而变动.多孔介质中两相不可压缩可混溶驱动问题是一典型的、有代表性 的"局部化现象"问题,其数学模型为耦合非线性偏微分方程组的初边值问题.为减轻数 值解在局部前沿位置的数值振荡,提高解的精确性,本文给出了该问题的动态混合元格 式和沿特征线修正的动态混合元格式,证明了其收敛性,并给出了误差估计. Many time-dependent problems involve localized phenomena, such as sharp fronts, shocks, and layers, which move with time. Miscible displacement problem in porous media is a typical, representative problem with localized phenomena, the models of which can be described as a coupled system of non-linear partial differential equations. To capture this moving local phenomena improve the numerical solution's precision, we present a dynamic mixed finite element we that with its modified form along the characteristic orve for incompressible miscible displacement in porous media, and discuss their convergence and error estimates.
出处 《系统科学与数学》 CSCD 北大核心 2005年第1期118-128,共11页 Journal of Systems Science and Mathematical Sciences
基金 高等学校博士学科点专项科研基金资助课题.
关键词 不可压缩 非线性偏微分方程组 初边值问题 局部化 收敛性 误差估计 前沿 动态 变动 特征 Miscible displacement problem,localized phenomena, dynamic mixed finite element method, characteristic modification, error estimation.
  • 相关文献

参考文献10

  • 1杨道奇.抛物型问题的变网格混合有限元方法[J].计算数学,1988,10(3):266-271.
  • 2袁益让.油水两相渗流驱动问题的变网格有限元方法及其理论分析[J].中国科学,1986,2:135-148.
  • 3Yang D P. Mixed methods with dynamic finite-element spaces for miscible displacement in porous media. J Comput Appl Math , 1990, 30: 313-328.
  • 4Yang D. Dynamic domain decomposition and grid modification for parabolic problems. Computers Math Applic , 1997, 33: 89-103.
  • 5Yang Daoqi. Improved error estimation of dynamic finite element methods for second-order parabolic equations. J Comput Appl Math, 2000, 126: 319-338.
  • 6Ewing R E, Wheeler M F. Galerkin method for miscible displacement in porous media. SIAM J Number Anal , 1980, 17: 351-365.
  • 7Douglas J Jr, Ewing R E and Wheerler M F. The approximation of the pressure by a mixed method in the simulation of miscible diaplacement. RAIRO Number Anal , 1983, 17: 17-33.
  • 8Douglas J Jr, Ewing R E and Wheerler M F. A time discretization procedure for a mixed finite element approximation miscible displacement in porous media. RARIO Number Anal , 1983, 17:249-265.
  • 9Russell T F. Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible dispacement in porous media. SIAM J Numer Anal , 1985, 22(5): 970-1013.
  • 10Jaffre J, Roberts Jean E. Upstream weighting and mixed finite elements in the simulation of miscible displacements. RAIRO, M^2 AN, 1985; 19(3): 443-460.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部