摘要
Lam和Van Lint 在推广友谊定理时构造了一类具有唯一定长路的有向图(这里 用D(c,k)表示),并证明了D(c,k)的自同构群包含一个2(c+1)阶二面体群。 木文利用D(c.k)的邻接矩阵的性质证明这个二面体群就是D(c,k)的全自同构群, 从而解决了 Lam和 Van Lint作中遗留的问题。
Lam and Van Lint, in their generalization of the Friendship Theorem, construct a kind of directed graphs with unique paths of fixed length, here denoted by D(c, k), and have proved that the automorphism group for D(c,k) contains a dihedral group of order 2(c+1). The author has proved that the dihedral group is just the full automorphism group for D(c, k), using the properties of the adjacent matrix of D(c, k). Hence, a problem left over in Lam and Van Lint's work has been solved.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
1989年第2期125-129,共5页
Journal of Dalian University of Technology
关键词
有向图
矩阵
自同构
群
G-循环矩阵
directed graph, matrix
automorphism
group/directed path
g-circulant matrix
Hall-polynomial