摘要
将MIT边条件用于运动和变形中的口袋,讨论了口袋的动力学:包括变动中口袋内的单夸克和单胶子波函数;夸克──胶子场的量子化和由夸克──胶子系统推动的口袋运动的动力学及其量子化、发现:变动中的口袋内胶子场为符合MIT边条件必须包含纵场成份:夸克数算符和胶子数算符成为非(?)密的;口袋作为一个整体的动力学类似于强子场论的动力学,例如仍可沿用强子场论中的自由强子传播子而将强子内部的夸克──胶子结构反映到顶点的非定域化上,这样就完成了量子口袋动力学的一个理论框架,使得可以在按动力学结构将口袋模型重新参数化后,在夸克──胶子和强子的两个不同层次上统一研讨强子物理和核物理。 量子口袋动力学也是变动中的容器内的量子场沦以及容器内的场与容器表面耦合的量子理论的例子。
Applying the MIT boundary condition to the moving bag surface,
we developed a framework for quantum bag dynamics. We have found
something interesting. For examples, for satisfying the MIT boundary
condition on the moving surface, the gluon field in the bag must
include a longitudinal component. The quark number and gluon number
operators in the bag enclosed by its moving surface are nonhermitian.
Nevertheless their eigenvalues are still non negative integers, but
their eigenfunctions are nolonger orthogonal to each other in the usual
hermitian sence. The dynamics of the bag drived by the quark-gluon
system in it looks like that described by a hadron field theory,
except that a nonlocal structure of vertices should be calculated
according to its extended quark-gluon structure. We expect that after a
reparame-trization according to its dynamical structure, we may use
this framework to study hadron physics and nuclear physics both on the
quark-gluon level and on the hadron level.
The quantum bag dynamics is also an example of quantum field theory in a moving cavity with the field cavity coupling.
出处
《物理学进展》
CSCD
北大核心
1993年第4期561-594,共34页
Progress In Physics
基金
自然科学基金委员会的资助