摘要
根据量子力学中态的线性叠加原理,构造了由多模泛函相干态、多模复共轭泛函相干态以及它们的相反态这4个宏观上完全可分辨的量子态线性叠加组成的四态叠加多模泛函叠加态光场。利用多模压缩态理论,研究了它的广义非线性不等幂奇数次Y压缩特性。结果发现:在一定的条件下,它可呈现出任意次的广义非线性不等幂奇数次Y压缩效应,其压缩程度、压缩深度和压缩幅度与压缩次数、腔模总数、态间叠加几率、光场经典强度和经典振幅以及各模经典初始相位的空间分布函数等强烈地非线性相关;特别是,光场经典强度和各模经典初始相位的空间分布函数对态的不等幂奇数次Y压缩效应的压缩程度、压缩深度和压缩幅度等会产生直接影响。
It was constructed that the four-states superposition multimode functional superposition state light-field according to the superposition principle of quantum state in quantum mechanics. The properties of generalized nonlinear unequal-power odd-number-power Y-squeezing of the state was firstly studied in detail by utilizing the multimode squeezed state theory. It is shown that under some certain and fixed conditions, the state can present the effect of any odd-number-power generalized nonlinear unequal-power (2pj + 1)-th-power Y-squeezing (here, pj = 0,1,2,3, ), and the squeezed degree, the squeezed depth, and the squeezed amplitude are intensively nonlinear related to the cavity mode number, the squeezed number, the probability among four states, the spatial distribution function of the classical intensity and classical amplitude, and the spatial distribution function of the classical initial phase of each mode of the state. Especially, the spatial distribution function of the classical intensity and classical amplitude of the light-field have a direct influence upon the squeezed degree, the squeezed depth, and the squeezed amplitude of generalized nonlinear unequal-power (2pj + 1)-th-power Y-squeezing of the state.
出处
《光电子.激光》
EI
CAS
CSCD
北大核心
2005年第1期115-119,123,共6页
Journal of Optoelectronics·Laser
基金
陕西省科技攻关资助项目(2002K05-G9)
陕西省教育厅专项科研基金资助项目(03JK212)