期刊文献+

共振下N维Liénard型方程的周期解

Periodic Solutions of N-Dimensional Lienard Type Equations at Resonance
原文传递
导出
摘要 本文应用Leray-Schauder原理在跨共振点条件下证明n维Lienard型方程存在周期解。推广了Conti·G,Reissig·R,黄先开等人的相应结果。 Using classical Leray-Schauder techniques, we otain the existence of T-periiodic solu-tions for n-dimensional Lienard type equations. The results, in a sense, make a break-through at restriction of avoiding resonance.
作者 陈洪奎
出处 《西安公路学院学报》 CSCD 北大核心 1993年第4期102-105,共4页
关键词 LIENARD方程 周期解 共振 先验界 Lienard equations Leray-Schauder degree periodic solutions at resonance a priori bounds.
  • 相关文献

参考文献4

  • 1黄先开.共振下n维Lienard型方程的2π周期解[J].应用数学,1991,4(3):30-35. 被引量:1
  • 2G. Conti,B. Iannacci,M. N. Nkashama. Periodic solutions of Liénard systems at resonance[J] 1985,Annali di Matematica Pura ed Applicata(1):313~327
  • 3J. Mawhin,J. R. Ward. Periodic solutions of some forced Liénard differential equations at resonance[J] 1983,Archiv der Mathematik(4):337~351
  • 4Rolf Reissig. Extension of some results concerning the generalized Liénard equation[J] 1975,Annali di Matematica Pura ed Applicata, Series 4(1):269~281

二级参考文献2

  • 1J. Mawhin,J. R. Ward. Periodic solutions of some forced Liénard differential equations at resonance[J] 1983,Archiv der Mathematik(4):337~351
  • 2Rolf Reissig. Extension of some results concerning the generalized Liénard equation[J] 1975,Annali di Matematica Pura ed Applicata, Series 4(1):269~281

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部