摘要
A novel combined model of the vibration control for the coupled flexiblesystem and its general mathematic description are developed. In presented model, active and passivecontrols as well as force and moment controls are combined into a single unit to achieve theefficient vibration control of the flexible structures by multi-approaches. Considering thecomplexity of the energy transmission in the vibrating system, the transmission channels of thepower flow transmitted into the foundation are discussed, and the general forces and thecorresponding velocities are combined into a single function, respectively. Under the controlstrategy of the minimum power flow, the transmission characteristics of the power flow areinvestigated. From the presented numerical examples, it is obvious that the analytical model iseffective, and both force and moment controls are able to depress vibration energy substantially.
A novel combined model of the vibration control for the coupled flexiblesystem and its general mathematic description are developed. In presented model, active and passivecontrols as well as force and moment controls are combined into a single unit to achieve theefficient vibration control of the flexible structures by multi-approaches. Considering thecomplexity of the energy transmission in the vibrating system, the transmission channels of thepower flow transmitted into the foundation are discussed, and the general forces and thecorresponding velocities are combined into a single function, respectively. Under the controlstrategy of the minimum power flow, the transmission characteristics of the power flow areinvestigated. From the presented numerical examples, it is obvious that the analytical model iseffective, and both force and moment controls are able to depress vibration energy substantially.
基金
ThisprojectissupportedbyNationalNaturalScienceFoundationofChina(No.50275085)ChinaRostdoctoralScienceFoundation(No.2004035223).