摘要
A translation-invariant based adaptive threshold denoising method formechanical impact signal is proposed. Compared with traditional wavelet denoising methods, itsuppresses pseudo-Gibbs phenomena in the neighborhood of signal discontinuities. To remedy thedrawbacks of conventional threshold functions, a new improved threshold function is introduced. Itpossesses more advantages than others. Moreover, based on utilizing characteristics of signal, aadaptive threshold selection procedure for impact signal is proposed. It is data-driven andlevel-dependent, therefore, it is more rational than other threshold estimation methods. Theproposed method is compared to alternative existing methods, and its superiority is revealed bysimulation and real data examples.
A translation-invariant based adaptive threshold denoising method formechanical impact signal is proposed. Compared with traditional wavelet denoising methods, itsuppresses pseudo-Gibbs phenomena in the neighborhood of signal discontinuities. To remedy thedrawbacks of conventional threshold functions, a new improved threshold function is introduced. Itpossesses more advantages than others. Moreover, based on utilizing characteristics of signal, aadaptive threshold selection procedure for impact signal is proposed. It is data-driven andlevel-dependent, therefore, it is more rational than other threshold estimation methods. Theproposed method is compared to alternative existing methods, and its superiority is revealed bysimulation and real data examples.
基金
ThisprojectissupportedbyNationalNaturalScienceFoundationofChina(No.50335030).