期刊文献+

Lubrication Mechanism of Micro/Nano-particles on Sialon

Lubrication Mechanism of Micro/Nano-particles on Sialon
下载PDF
导出
摘要 The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test rig. The chemical composition of the worn surface was characterized by X-ray photoelectron spectroscopy (XPS). The morphologies of the worn surfaces of Sialon were analyzed by scanning electron microscopy (SEM). The results show that the particles can reduce the friction coefficient of the pairs and the wear volume of Sialon significantly. The wear resistance of micro-borate is superior to that of nano-PbS while the friction-reducing ability of PbS is better than that of borate. According to the XPS and SEM results, the wear resistance of PbS is mainly depended on the tribochemical film mainly composed of PbSO 4, which deposited on the worn surface with good bonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, indicating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle. The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test rig. The chemical composition of the worn surface was characterized by X-ray photoelectron spectroscopy (XPS). The morphologies of the worn surfaces of Sialon were analyzed by scanning electron microscopy (SEM). The results show that the particles can reduce the friction coefficient of the pairs and the wear volume of Sialon significantly. The wear resistance of micro-borate is superior to that of nano-PbS while the friction-reducing ability of PbS is better than that of borate. According to the XPS and SEM results, the wear resistance of PbS is mainly depended on the tribochemical film mainly composed of PbSO 4, which deposited on the worn surface with good bonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, indicating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.
作者 张文光
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期5-7,共3页 武汉理工大学学报(材料科学英文版)
基金 FundedbytheNationalNaturalScienceFoundationofChi na (No .30 30 0 0 78)
关键词 sialon ceramic micro/nano-particle ADDITIVE lubrication mechanism sialon ceramic micro/nano-particle additive lubrication mechanism
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部