摘要
对实线性代数方程组AX=F,用A=(a_(ij))_(m×n)的奇异值分解和Moore-Penrose广义逆理论,对无论m大于、等于或小于n、方程组相容与否、良态还是病态,给出统一求解公式和类型判别。应用该法在微机上计算了例题。
Basing on the theory for the singular values decomposition of matrix A = (aij)m×n and its Moor-Penrose generalized inverse matrix, a universal solution formula of real linear algebraic equations AX = F, whether which is consistent or not, well conditioned or not, is given, the way to determine the equations' type is found.
As one application of this algorithm, the equations in the paper are solved with microcomputer.
出处
《西北建筑工程学院学报(自然科学版)》
1993年第1期54-61,共8页
Journal of Northwestern Institute of Architectural Engineering
关键词
线性代数方程
统一算法
类型
linear algebraic equations, universal algorithm, determining equations' type