摘要
针对变系数椭圆型方程矩形元,证明了能量积分的渐近展开具有如下的乘积定理:∫Ω∫Ωk2jh2iFi(D2i-2Gj(D2j-2B(w,uh)=∑ny(uyyφ))vhdxdy+ex(uxxφ))vhdxdy+∑nei=1j=1∫Ω∑nh2i[Fij(D2i-2eek2jxD2j-2y(uyyφ))]vhdxdy+Rn,h.xD2jy(uxxφ))
For the elliptic partial differential equations of variable coefficient,we obtain the product theorem of asymptotic expansions of energy integral as follows:B(w,v_h)=∑ni=1h^(2i)_e∫_ΩF_i(D^(2i-2)_x(v_(xx)φ))v_hdxdy+∑nj=1k^(2j)_e∫_ΩG_j(D^(2j-2)_y(u_(yy)φ))u_hdxdy+∑ni+j=2h^(2i)_ek^(2j)_e∫_Ω[F_(ij)(D^(2i-2)_xD^(2j)_y(u_(xx)φ))+G_(ij)(D^(2i)_xD^(2j-2)_y(u_(yy)φ))]v_hdxdy+R_(n,h).
出处
《南华大学学报(自然科学版)》
2004年第4期18-21,共4页
Journal of University of South China:Science and Technology
基金
湖南省教育厅资助项目(03C427).
关键词
椭圆方程
能量积分
渐近展开
乘积定理
矩形元
elliptic equation
energy integral
asymptotic expansions
product theorem