期刊文献+

基于多传感器信息融合的智能仪表研究 被引量:4

Study on intelligent instrument based on multi-sensor information fusion
下载PDF
导出
摘要 针对智能仪表多传感器系统中存在的信息处理复杂、不可靠等问题,提出了利用智能仪表中的多传感器信息资源,融合多传感器信息,提高智能仪表检测精度和可靠性的方法。结合矿井瓦斯监测、井下煤的自燃监测等实例,介绍了智能仪表中多传感器信息融合的模式,以及智能仪表研究设计中应注意的问题。将多传感器信息融合技术应用于智能仪表之中,可大大提高智能仪器仪表的精度、可靠性和容错能力。 In view of problems existing in intelligence instrument multi-sensor system that information processing is complicated, not reliable and so on, proposes method utilizing multi-sensor information resources in the intelligent instrument, fusing multi-sensor information to improves the intelligent instrument’s precision and dependability. Combines such instances as mine gas monitoring, spontaneous combustion monitoring of the coal, introduces multi-sensor information fusion mode in intelligent instrument, and intelligence instrument questions that should be paid attention to in the design. Application of multi-sensor information fusion technology to the intelligent instrument can improve the precision, dependability and fault-tolerant ability of the intelligent instrument greatly.
作者 付华
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第6期790-792,共3页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省教育厅基金资助项目(202183393)
关键词 多传感器 信息融合 智能仪表 multi-sensor information fusion intelligent instrument
  • 相关文献

参考文献4

  • 1Luo RE,Michael GK. Multisensor Integration and Fusion in Intelligent Systems[J]. IEEE Trans. System, man, and Cybernetics, 2002, 32(5): 851-877.
  • 2Waltz E, L linas J. Multisensor Data Fusion[M]. New York: Artech House, INC.,1990.
  • 3Qiang Gan, Chis J. Harris. Compareson of two measurement fusion methods for kalman-filter based multisensor data fusion[J].IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(1): 273-280.
  • 4Marchette D, Priebe C. An Application of Neural Networks to a Data Fusion Problem, Proc[J]. Data Fusion Symp. 2001, (2): 315-321.

同被引文献15

  • 1吴微威,王卫东,卫国.基于超宽带技术的无线传感器网络[J].中兴通讯技术,2005,11(4):28-31. 被引量:7
  • 2XU SG,SAADA WI T. Docs the IEEE 802.11 MAC protocol work well in multi hop wireless ad hoc network [J].IEEE Communication Magazine,2001, (6): 130-137
  • 3Lindsey..Raghavendra S Pegasis. Power efficient gathering in sensor information systems[J]. IEEE Aerospace Conference, March 2002,(1):16-20
  • 4Johnson TF, Su W."Wireless sensor network .A survey[J].Computer Networks,2002, 38(4):393-422
  • 5Park J H, Friedman G, M Jones. Geographical feature sensitive sensor placement[J]. Journal of Parallel and Distributed Computing, 2003,32(5): 815-825.
  • 6L.R.Rabiner.A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J].Proceedings of the IEEE,1989,77(2):257-286.
  • 7Agazzi O,Kuo S.Hidden Markov Models Based Optical Character Recognition in Presence of Deterministic Transformation[J].Pattern Recognition,1993,26(12):1813-1826.
  • 8Waltz E,L linas J.Multisensor Data Fusion[]..1990
  • 9Marchette D,,Priebe C.An Application of Neural Networks to a Data Fusion Problem[].Proc Data Fusion Symp.2001
  • 10Aiello,G.R.Challenges for ultra-wideband (UWB) CMOS integration[].IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.2003

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部