期刊文献+

基于小波变换和误差竞争学习的矢量量化 被引量:1

Vector Quantization Based on Wavelet-Transform and Distortion Competitive Learning
下载PDF
导出
摘要 用神经网络实现图像矢量量化是一种非常有效的方法 ,而小波变换又是近年来迅速发展起来的新算法。文中提出一种改进的误差竞争学习算法 ,分析了图像在小波变换后数据的特点 ,提出了新的矢量构造方法 ,从而最终得到了基于小波变换和误差竞争学习的矢量量化图像压缩新算法 (以下简称VQWDCL) ,无论是在主客观效果上 ,还是在计算复杂度上 ,其性能都优于传统的基于小波变换和LBG算法的矢量量化。 Neural network is a very efficient method for vector quantization, and wavelet transform is a new algorithm developed rapidly in recent years. In this paper a kind of modified distortion competitive learning algorithm was proposed, image data after wavelet transform was analyzed, a new method of vector construction was proposed, and then a new vector quantization algorithm for image compression based on wavelet transform and distortion competitive learning (VQWDCL) was proposed, which is superior to the conventional vector quantization based on wavelet transform and LBG algorithm both on the experiments results and on the computation complication.
作者 李国刚 姜威
出处 《信息技术与信息化》 2004年第6期21-23,27,共4页 Information Technology and Informatization
关键词 小波变换 误差竞争学习 矢量量化 神经网络 图像压缩 Wavelet transform Neural network Distortion competitive learning Vector quantization(VQ)
  • 相关文献

参考文献4

  • 1[1]Y.Linde,A.Buzo,and R.Gray An algorithm for vector quantization design.IEEE Trans.Commun,1980,28(1):84-95
  • 2[2]Gersho A. Asymptotical optimal block quantization.IEEE Trans. On Information Theory,1979,28(2):157~166
  • 3[3]Ce Zhu and Lai-Man Po, Minimax partial Distortion Competitive Learning for Optimal Codebook Design.IEEE,Trans.Image Processing,1998,7(10):1400-140
  • 4[4]X.Wang,E.Chan,M.K.Mandal,and Panchanathan,Wavelet-based Image Coding Using Nonlineal Interpolative Vector Quantization.IEEE Transacion on Image Processing,1996,5(3):518-522

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部