期刊文献+

基于信息论的连续属性离散化 被引量:2

Discretization of Continuous-valued Attributes Using Information Theory
下载PDF
导出
摘要 使用信息论的方法进行连续属性的离散化。引入Hellinger偏差HD (Hellinger Di-vergence)作为每个区间对决策的信息量度量,从而定义切分点的信息熵,最终的离散化结果是使各区间的信息量尽可能平均。分析了HD度量在两种离散化方法中的作用,说明它在划分算法中运用比较理想,而在归并算法中则有局限。 We adopt the method of information theory in the discretization of continuous numerical va- lues. We introduce Hellinger divergence as the measure of amount of information that each potential interval gives to the decision attributes. Then the entropy of cutpoint is defined. Our aim is to discretize numeric values so that the information content of each interval is as equal as possible. We analyze the act of Hellinger divergence in both discretization algorithms of merging and splitting, and draw a conclusion that it is a fairly ideal measure in the latter and has some limitations in the former.
出处 《空军雷达学院学报》 2001年第2期20-23,共4页 Journal of Air Force Radar Academy
关键词 连续属性离散化 算法 归并 度量 信息论 信息熵 切分 离散化方法 平均 区间 merging splitting cutpoint HD divergence interval distance
  • 相关文献

参考文献1

  • 1[1]Lee C, Shin D-G. A Context-Sensitive Discretization of Numeric Attributes for Classification Learning. In: Cohn A,ed. 11th European Conference on Artificial Intelligence. John Wiley & Sons, Ltd., 1994: 428-432.

同被引文献65

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部