期刊文献+

最大泛化规则生成

Generation of Maximally Generalized Rules
下载PDF
导出
摘要 讨论了基于粗糙集理论的分类知识发现中最大泛化规则的生成。首先给出一个最大泛化规则的生成算法,提出采用基于信息论观点的J-measure作为属性有效度量,用来在求最大泛化规则的过程中,启发式地选择试图删除的条件属性。最后通过实例说明了最大泛化规则生成算法的执行过程。 In this paper, the generation of maximally generalized rules in the course of classification knowledge discovery based on rough sets theory is discussed. Firstly, an algorithm is introduced. We propose that the information-based J-measure be used as another measure of attribute significance value. This measure is used for heuristically selecting the conditions to be removed in the process of extracting a set of maximally generalized rules. Finally, we present an example to illustrate the process of the algorithm.
出处 《空军雷达学院学报》 2001年第2期24-27,共4页 Journal of Air Force Radar Academy
关键词 生成算法 泛化 规则 删除 粗糙集理论 知识发现 属性 度量 信息论 启发式 classification knowledge discovery maximally generalized rules information theory J-measure significance
  • 相关文献

参考文献3

  • 1[1]Cercone N, Hamilton H, Hu X, Shan N. Data Mining Using Attribute-Oriented Generalization and Information Reduction.In: Lin T Y , Cercone N, eds. Rough Sets and Data Mining: Analysis of Imprecise Data Mining. Boston/London/Dordrecht: Kluwer Academic Publishers, 1997: 199-227.
  • 2[2]Smyth P, Goodman R M. Rule Induction Using Information Theory. In: Piatetsky-Shapiro G, Frawley W J. eds.Knowledge Discovery in Databases. Cambridge, MA: AAAI/MIT Press, 1991: 159-176.
  • 3[3]Smyth P, Goodman R M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Transactions on Knowledge and Data Engineering. 1992, 4 (4): 301-316.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部