期刊文献+

分数阶系统状态空间描述的数值算法 被引量:4

A numerical algorithm for the state-space representation of fractional order systems
下载PDF
导出
摘要 利用Gr櫣nwald_Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求.给出并证明了分数阶微积分的高阶近似所应满足的条件,并在此基础上推导出分数阶线性定常系统状态空间描述的数值计算公式.本法不但公式简单易编程,而且具有计算精度高、运算速度快等优点.给出一个粘弹性动态系统的仿真实例,验证了其有效性. The computational precision is only of first order by using Grünwald-Letnicov fractional calculus definition to approximate fractional differentials/integrals,and thus it can not satisfy the high convergence demand.The high order approximate conditions for fractional differentials/integrals are given and verified,and based on that the numerical formula of the state space representation of linear time-invariant fractional order systems is deduced.This algorithm has not only a simple form,which is easy to program,but also the advantage of a high precision and fast computation time.An example of solving numerically the dynamic viscoelasticity system is given to show the effectiveness of the method aforementioned.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第1期101-105,109,共6页 Control Theory & Applications
基金 863基金资助项目(2002AA517020) 上海市科技发展基金资助项目(011607033).
关键词 分数微积分 分数阶系统 分数阶线性多步长方法 状态空间描述 fractional calculus fractional systems fractional linear multi-step methods state-space representation
  • 相关文献

参考文献9

  • 1PODLUBNY I. Fractional-order systems and-controllers [ J ]. IEEE Trans on Automatic Control, 1999,44( 1 ):208- 214.
  • 2MATIGNON D. Stability results for fractional differential equations with applications to control processing [ C ] // Computational Engineering in Systems and Apphcation. Lille,France: IEEE Press. 1996,2:963 - 968.
  • 3MATIGNON D, D' ANDREA-NOVEL B. Some results on controllability and observability of finite-demensional fractional differential systems [ C ]//Computational Engineering in Systems and Application multiconference. Lille,France: IEEE Press. 1996,2:952 - 956.
  • 4PODLUBNY I. Fractional Differential Equations [ M ]. San Diego:Academic Press, 1999:243 - 260.
  • 5ZHANG W, SHIMIZU N. Numerical algorithm for dynamic problems involving fractional operators [J]. Int J of the Japan Society of Mechanical Engineers, Series C, 1998,41 (3): 364 - 370.
  • 6OLDHAM K B, SPANIER J. The Fractional Calculus [ M ]. New York: Academic, 1974.
  • 7IKEDA F, KAWATA S, OGUCHI T.A numerical algorithm of time response for factional differential equations [J] . Trans on Society of Instrument and Control Engineers ,2001,37(8) :795 - 797.
  • 8HENRICI P. Discrete Variable Methods in Ordinary Differential Equations [M]. New York: John Wiley, 1968.
  • 9KATZNELSON Y. An Introduction to Harmonic Analysis [M]. New York:John Wiley, 1968.

同被引文献53

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部