期刊文献+

群的正则带的拟强半格分解

Quasi Strong Semilattice Decomposition of Regular Cryptogroups
下载PDF
导出
摘要 推广了半群的强半格分解的定义,得到了半群的拟强半格分解,并证明了完全正则半群为群 的正则(或右拟正规)带当且仅当它是完全单半群的拟强半格(且 )). The definition of strong semilattice decomposition of semigroups is generalized, the definition of quasi strong semilattice decomposition of semigroups is given, and we prove that a completely regular semigroup is a regular (or right quasinormal) cryptogroup if and only if it is a quasi strong semilattice of completely simple semigroups (also satisfies )).
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第1期154-160,共7页 数学研究与评论(英文版)
基金 曲阜师范大学青年基金(XJ02003 XJ03004)
关键词 拟强半格分解 正则带 同余 quasi strong semilattice decomposition regular band congruence
  • 相关文献

参考文献2

二级参考文献10

  • 1[1]Howie J M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
  • 2[2]Petrich M and Reilly N R. Completely Regular Semigroups. New York: John Wiley & Sons, Inc, 1999.
  • 3[3]Yamada M and Kimura N. Note on idempotent semigroups, II. Proc. Japan. Acad, 1958, 34: 110-112.
  • 4[4]Petrich M. Lectures in Semigroups. Berlin: Academic Verlag, 1977.
  • 5[5]Zhang Liang, Shum Karping and Zhang Ronghua. On refined semilattices, to appear in Algebra Colloquium.
  • 6[6]Kong Xiangzhi and Shum Karping. On the structure of regular crypto semigroups. Communications in Algebra, 2001, 29(6): 2461-2479.
  • 7Petrich M.Lectures in semigroups[]..1977
  • 8Petrich M,Reilly N R.Completely Regular Semigroups[]..1999
  • 9Petrich,M.A construction and a classification of bands[].Math Nochrchten.1971
  • 10Zhang, L,Huang. J.General semilattice of semigroups type T and the structure of regular bands[].The Proc of Kunming conference’’ in semigroups.1998

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部