期刊文献+

具有二项式型多项式下三角矩阵的性质 被引量:7

The Properties of Lower Triangular Matrix Associated with Polynomial of Binomial Type
下载PDF
导出
摘要 n+1阶下三角方阵Ln[x]定义为:(Ln[x])ij=(?)i-j(x)l(i,j)(如果i≥j),否则为0,且满足条件l(i,k)l(k,j)=l(i,j)(k-j i-j)和 ,即二项式型多项式函数矩阵.n+1阶方阵Ln定义为:当i≥j时,(Ln)ij=l(i,j),否则为0.本文研究了比Pascal函数矩阵及Lah矩阵更广泛的一类矩阵Ln[x]与Ln,得到了更一般的结果和一些组合恒等式. The properties of the lower triangular functional matrix Ln[x] associated with a polynomial of binomial type are discussed in this paper, in which the entry-(i,j) of Ln[x] is equal to lij =(?)i-j(x)l(i,j)if i≥j and equal to 0 otherwise, with l(i, k)l(k,j) = l(i,j)(k-j i-j) and for integers n,k,i,j and real numbers x,y. Pascal matrix and its generalizations are special cases of Ln[x]. More general results and some combinatorial identities are derived.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第1期183-190,共8页 数学研究与评论(英文版)
关键词 Pascm矩阵 二项式型多项式 下三角矩阵 Pascal matrix polynomial of binomial type lower triangular matrix
  • 相关文献

参考文献12

  • 1CHEON Gi-sang, KIM Jin-soo. Stirling matrix via Pascal matrix [J]. Linear Algebra Appl., 2001, 329: 49-59.
  • 2BAYAT M, TEIMOORI H. The linear algebra of the generalized Pascal functional matrix [J]. Linear Algebra Appl., 1999, 295: 81-89.
  • 3COMET L. Advanced Combinatorics [M]. Boston: D.Reidel Pub. Co., 1974.
  • 4BRAWER R, PIROVINO M. The linear algebra of the Pascal matrix [J]. Linear Algebra Appl., 1992, 174:13-23.
  • 5CALL G S, VELLEMAN D J. Pascal's matrices [J]. Amer. Math. Monthly, 1993, 100: 372-376.
  • 6ZHANG Zhi-zheng, LIU Mai-xue. An extension of the generalized Pascal matrix and its algebraic properties [J]. Linear Algebra Appl., 1998, 271: 169-177.
  • 7ZHAO Xi-qiang, WANG Tian-ming. The algebraic properties of the generalized Pascal functional matrices associated with the exponential families [J]. Linear Algebra Appl., 2000, 318: 45-52.
  • 8GOULD H W. Combinatorial Identities [M]. Morgantown, West Virginia, 1972.
  • 9LOEB D E, ROTA G C. Formal power series of logarithmic type [J]. Adv. Math., 1989, 75: 1-118.
  • 10WILF H S. Generating functionology. Second edition [M]. San Diego: Academic Press, 1994.

同被引文献53

  • 1齐民友.素性判断的一个重大进展[J].数学通讯(教师阅读),2005,19(5):1-3. 被引量:3
  • 2万哲先.二项式系数和Gauss系数[J].数学通报,1994,33(10). 被引量:6
  • 3YANG SHENGLIANG. Some identities involving the binomial sequences[J]. Discrete Mathematics, 2008, 308(1): 51-58.
  • 4MIHOUBI M. Bell polynomials and binomial type sequences[J]. Discrete Mathematics, 2008, 308(12): 2450-2459.
  • 5BROWN R. Sequences of functions of binomial type[J]. Discrete Mathematics, 1973, 6:313-331.
  • 6KALMAN UNGAR D A. Combinatorial and functional identities in one-parameter matrices[J]. The American Mathematical Monthly, 1987, 94(1): 21-35.
  • 7WANG WEIPING, WANG TIANMING. Matrices related to the Bell polynomials[J]. Linear Algebra and its Applications, 2007, 422(1): 139-154.
  • 8ABBAS M, BOUROUB1 S. On new identities for Bell polynomials[J]. Discrete Mathematics, 2005, 293: 5-10.
  • 9Bell E T. Exponential polynomials. American Mathematical Monthly, 1934;41 : 411-419.
  • 10Comtet L. Advanced combinatorics. The art of finite and infinite expansions. Boston : Reidel Publ. Company, 1974.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部