期刊文献+

利用Gamma CFAR进行SAR图像目标检测 被引量:2

Modified target detector for SAR image by quadratic Gamma kernels
下载PDF
导出
摘要 利用二项式Gamma核进行SAR图像目标检测,并提出自适应选取扫描窗大小的方法,给出了一种基于改进的二项式Gamma核SAR图像检测方法提高二项式Gamma核检测器的性能。用于高分辨率单视单极化的极不均匀的SAR图像,能够在较小虚警率下将人造目标全部检测出来,而且能很好地保持人造目标的结构信息。实验证明所提方法的有效性。 CFAR detector is widely used as a target detector in SAR because of its simplicity and effectiveness. However, when used in an extremely heterogeneous SAR image, it leads to a bad performance. So, a new target detector for SAR image by quadratic Gamma kernels with adaptive guard-band size is presented. This method is tested with high resolution single look single polarity SAR data. The results show that it can detect all the artificial targets with lower false alarm rate, and in the same time the detected targets preserve their structure information very well.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第1期40-42,114,共4页 Systems Engineering and Electronics
基金 国防预研项目基金资助课题(41322020401)
关键词 合成孔径雷达 目标检测 Gamma核 SAR target detection Gamma kernels
  • 相关文献

参考文献5

  • 1万朋.[D].电子科技大学,2001.
  • 2付琨,匡纲要,郁文贤.基于改进相关邻域模型的SAR图像RCS重构[J].系统工程与电子技术,2001,23(4):48-53. 被引量:3
  • 3Principle Jose C, Alex Radisavljevic, Fisher J, et al. Target prescreening based on a quadratic gamma discriminator [J]. IEEE Trans. On Aerospace and Electronic Systems, 1998, 34(3): 706- 715.
  • 4Principle Jose C, Munchurl Kim , Fisher John W. Target discrimination in synthetic aperture radar using artificial neural networks [J]. IEEE Trans. on Image Processing, 1998, 7(8): 1136 - 1149.
  • 5Yen Li-kang. Focus of attention for millimeter and ultra wideband syn thetic aperture radar imagery[ D]. A Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, 1998.

二级参考文献8

  • 1[1]McConnell I, White R G, Oliver C J, et al. Radar Cross-Section Estimation of SAR Images. Europto Conf. on SAR Image Analysis, Simulation and Modeling, Taormina, Italy, SPIE proc., 1996, 2958: 74~85.
  • 2[2]Lee J S. A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images. IEEE Trans. on Syst.Man Cybern,1983, 13:85~89.
  • 3[3]Lee J S. Refined Filtering of Image Noise Using Local Statistics.Comp. Graph.Images Proc., 1981, 17:1735~1758.
  • 4[4]Kuai D T, Sawchuk A A, Strand, et al. Adaptive Restoration of Images with Spekle.IEEE Trans. on Acoust.Speech Signal Process., 1987, 35:373~383.
  • 5[5]Crimmins T R. Geometric Filter for Reducing Speckle. Appl.opt., 1985,24:1438~1443.
  • 6[6]Ward K D. Compound Representation of High Resolution Sea Clutter. Electron. Lett., 1981, 17:561~565.
  • 7[7]Oliver C J. A Model for Non-Rayleigh Scattering Statistics. Opt.Acta, 1984, 31:701~722.
  • 8[8]Chris Oliver,Shaun Quegan. Understanding Synthetic Aperture Radar Images.Chapter 6, 1998:166.

共引文献2

同被引文献14

  • 1王世锦,孟健青.单元筛选后作最小选择的CFAR自适应检测器[J].雷达与对抗,2004,24(4):40-43. 被引量:1
  • 2YANG Y, QIU Y, LU C. Automatic Target Classification Experiments on the MSTAR SAR Images [ C ]//Proc. 6th Int. Conf. on SNPD/SAWN, Washington : IEEE Computer Society, 2005.
  • 3杰里·L·伊伏斯,等.现代雷达原理[M].卓荣邦,译.北京:电子工业出版社,1991.
  • 4ROGER J, SULLIVAN. Microwave Radar Imaging and Advanced Concepts [ M ]. Boston : Artech House,2000.
  • 5LI J ,ZELNIO E G. Target Detection with Synthetic Aperture Radar[J]. IEEE Trans. on AES, 1997,32(2) :613- 627.
  • 6LANDOWSKI J G, LOE R S. Target Cluster Detection in Cluttered Synthetic Aperture Radar Imagery [ J ]. SPIE, 1989,1099:9-16.
  • 7张红蕾,宋建社,翟晓颖.一种基于二维最大熵的SAR图像自适应阈值分割算法[J].电光与控制,2007,14(4):63-65. 被引量:8
  • 8高贵,黄纪军,匡纲要,李德仁.一种适用于rural区SAR图像目标感兴趣区域获取方法[J].信号处理,2007,23(4):573-577. 被引量:2
  • 9Quoc H Pham,Timothy M Brosnan,Mark J T Smith.Multistage Algorithm for Detection of Targets in SAR Image Data[J].SPIE,1997;3070
  • 10Michael E Smith,Pramod K Varshney.Intelligent CFAR Processor Based on Data Variability[J].IEEE Transactions on Aerospace and Elect ronic Systems,2000

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部