摘要
从基于GMM的与文本无关语种辨识系统的帧似然概率的统计特性出发,提出了针对语种辨识的GMM模型训练的新方法以及一种对目标和非目标模型帧似然概率进行补偿变换的方法。理论分析和实验结果表明,与GMM常用的最大似然穴ML雪变换相比,该变换能使系统提高辨识率达2.0%,因此,证明了该变换能够改善基于GMM的语种辨识系统的识别率。
This paper presents a compensation transformation method for the frame likelihood probability of objected and non-objected models. It is according to the statistical characteristic of the frame likelihood probability in the text-independent speaker recognition system based on GMM. The theory analysis and result of experiment indicates that the transformation can reduce the error recognition ratio to 2.0% ,comparing to Maximum Likelihood(ML) transformation which is mostly used in GMM.
出处
《微电子学与计算机》
CSCD
北大核心
2004年第12期131-134,共4页
Microelectronics & Computer
关键词
语种辨识
混合高斯模型
帧似然概率
Language identification, Gaussian mixture model, Frame likelihoods probability