期刊文献+

完全多部图的G-填充和覆盖

PARKING AND COVERING OF THE COMPLETE GRAPH AND THE COMPLETE MULTIGRAPH WITH A GRAPH OF FIVE VERTICES
下载PDF
导出
摘要  设图G是由P4带一条悬边所组成的五点四边图,本文确定了完全图Kv和完全多部图Kn(t)的图G填充数和覆盖数. Let G be the 3-path and a stick. This paper determines G-parking numbers and G-covering numbers of complete graph Kv and complete multigraphs Kn(t)
出处 《佳木斯大学学报(自然科学版)》 CAS 2005年第1期110-113,共4页 Journal of Jiamusi University:Natural Science Edition
基金 江苏省高校自然科学基金资助项目(03KJB110012)
关键词 完全图 图填充 图覆盖 complete graph parking of the complete graph covering of the complete graph
  • 相关文献

参考文献5

  • 1顾成扬.完全多部图K_n(t)的G-分解[J].淮阴师范学院学报(自然科学版),2004,3(2):95-97. 被引量:1
  • 2Bondy JA, Murty USR. Graph Theory with Applications[M]. London and Basingstoke: Macmillan Press, 1976.
  • 3J. C and Schoe nheim J. G - decomlmsition of Kn, where G has four vertices or less [J]. Discrete Math, 1997, 19:113 - 120.
  • 4Bermond J. C, Huang C, Rosa A, et al. Decomposition of complete graphs into isomorphic sutgraphs with five vertices [J]. Ars Combinatoris, 198010:293 - 318.
  • 5Y Roditty ,Parking and covering of the complete graph with a graph G of four vertices or less, JCT Series A 1983,34 231 - 243.

二级参考文献5

  • 1[1]Bermond J C, Huang C, Rosa A, et al. Decomposition of complete graphs into isomorphic sutgraphs with five vertices[J]. Ars Combinatoris,1980(10):293-318.
  • 2[2]Hoffman D.G G-designs of order n and index λ where G has 5 vertices or less[J]. Australasian journal of combinatorics, 1998(18): 13-37.
  • 3[3]Kazuhiko Ushio. G-designs and related designs[J]. Discrete Math, 1993(116): 299-311.
  • 4[4]Bondy J A, Murty U S R. Graph Theory with Applications[M]. London and Basingstoke: Macmillan Press, 1976.
  • 5[5]Colbourn C J, Dinitz J H. The CRC handbook of combinatorial designs[M]. Boca Raton Florida:CRC Press Inc, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部