期刊文献+

基于滤波过程的卡尔曼滤波发散判定方法 被引量:11

Method of divergence detection for Kalman filter based on filtering process
下载PDF
导出
摘要 分析了传统的基于单步量测的新息序列不等式判据等方法进行卡尔曼滤波发散判断的局限性,根据卡尔曼滤波过程的稳定性定义,采用矩阵序列极限形式给出了基于滤波过程的更加严格的滤波发散判据以及判断滤波发散的实际算法。根据4个判定条件,不但可以判断滤波过程是否发散,而且可以在很大程度上克服不等式判据的缺陷。该方法是基于整个滤波过程而不是基于单步量测,避免了原方法对量测野值比较敏感的缺点,提高了判断的抗野值能力,有利于减少误判风险以及提高判断的可靠性和准确性。仿真结果表明,结论是正确和有效的。 Firstly, the disadvantages of the traditional method of remainder inequation used to detect the divergence of Kalman filter based on single measurement are analyzed in detail. Then a new method is first presented by means of a matrix sequence limit, according to the stability of filtering process. The key to the method is four equivalent divergence detecting conditions based on filtering process. Particularly, our method is insensitive to the measurement outlier and mainly characterized by being not based on single measurement but on filtering process. So our method can detect divergence with high reliability, high validity and strong outlier resistance, and reduce the risk of false detection that the traditional method has. Finally, a useful detecting arithmetic is given. Simulation shows that the result is correct and effective.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第2期229-231,共3页 Systems Engineering and Electronics
关键词 卡尔曼滤波 发散 新息序列不等式 滤波过程 单步量测 野值 Kalman filter divergence remainder error sequence inequation filtering process single measurement outlier
  • 相关文献

参考文献4

二级参考文献32

  • 1段晓东,袁信,田忠元.GPS/DNS组合导航系统研究[J].南京航空航天大学学报,1996,28(1):66-73. 被引量:4
  • 2陈小明.高精度GPS动态定位的理论与实践[M].武汉:武汉测绘科技大学,1997..
  • 3[1]LIU Da-jie,SHI Yi-min, GUO Jin-jun. The Theory about GPS and Data Process[M].Shanghai:Tongji University Press,1996. (in Chinese)
  • 4[2]CAMPANA R, MARRADI L, BONFANTI S, et al. GPS Attitude Determination by Adaptive Kalman Filtering [A]. Proceedings of ION GPS-98[C]. Palm Springs California: the Institute of Navigation,1998,1 979-1 988.
  • 5[3]HOFMANN-WELLENHOF B, LICHTENEGGER H,COLLINS J. Global Positioning System: Theory and Practice(Fifth Revised Edition)[M]. New York: Springer-verlag,2001.
  • 6[4]JIA Pei-zhang, ZHU Zheng-tao. Optimal Estimation and Its Application[M] .Beijing: Science Press,1984.(in Chinese)
  • 7[5]CHUI Xi-zhang,YU Zhong-chou,TAO Ben-zao,et al. Generalized Surveying Adjustment[M]. Beijing:Publishing House of Surveying and Mapping Press,1992.(in Chinese)
  • 8[6]HU C W, CHEN Y Q, CHEN W,et al. Adaptive Kalman Filtering for DGPS Positioning[A]. Proceedings of KIS 2001[C]. Banff: The University of Calgary, 2001,232-237.
  • 9[7]MOHAMED H, SCHWARZ K P. Adaptive Kalman Filtering for INS/GPS[J] . Journal of Geodesy,1999,73(4),193-203.
  • 10[8]HU Cong-wei. The Basic Models for Short GPS Baseline and Data Process Methods for GPS Kinematic Positioning[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Science, 1999.(in Chinese)

共引文献101

同被引文献74

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部